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Abstract. For my paper, I hope to cover some of the interesting
properties of the Conway groups. In particular, the Conway groups
are the three sporadic simple groups Co1, Co2 and Co3 (and the
related group Co0). Conway recently passed away, and it seems
fitting to write a paper about some of his greatest work.

1. Introduction to sporadic groups

We begin our study of sporadic groups by recalling a few things we’ve
learnt about simple groups.

Definition 1.1. A groupG is called simple if its only normal subgroups
are G and {e}.

A natural question we ask is whether there is some way to classify
the finite simple groups. There is, and this is called the classification
theorem.

Theorem 1.2. The finite simple groups consist of 18 countably infinite
families as well as 26 sporadic groups that do not fall into any infinite
family.

Essentially, the sporadic groups are exceptions in that they do not fit
the pattern of the other 18. Now let’s define the three Conway groups:

Definition 1.3. The Conway group Co1 is a sporadic simple group
with order

221 · 39 · 54 · 72 · 11 · 13 · 23 = 4157776806543360000.

The Conway group Co2 is a sporadic simple group with order

218 · 36 · 53 · 7 · 11 · 23 = 42305421312000.

The Conway group Co3 is a sporadic simple group with order

210 · 37 · 53 · 7 · 11 · 23 = 495766656000.

[CK09]
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The largest of the three Conway groups is Co1. In order to investigate
the most interesting facts about these groups, we must learn a few more
things.

2. Unimodular lattices & the Leech lattice

Let’s look at some prerequisite definitions.

Definition 2.1. A unimodular lattice is an integral lattice with deter-
minant either −1 or 1.

Building up from the latter definition, we can introduce the Leech
lattice, which we’ll be using in our study of the Conway groups.

Definition 2.2. The Leech lattice is an even, unimodular lattice which
is 24-dimensional. It is commonly denoted as Λ24. [Bor99]

There is a proof that the Leech lattice is unique. Before we prove
this, we need to give a few more definitions.

Definition 2.3. A definite quadratic form is a quadratic form (poly-
nomial with all terms having degree 2) over a real vector space (call it
V ) such that for each non-zero vector of V , the quadratic form always
has the same sign.

Following from this, we can describe a unimodular lattice called the
Neimeier lattice as well as a Lorentzian lattice.

Definition 2.4. There are 24 positive-definite (having the same sign
as mentioned in Definition 2.3) even unimodular lattices with rank1 24.
These are called Neimeier lattices. There is also an even 26-dimensional
Lorentzian unimodular lattice. This is called the Lorentzian lattice, and
is denoted II25,1. [Bor99]

Now that we have those definitions covered, let’s prove that the Leech
lattice is unique.

Theorem 2.5. The Leech lattice is unique.

Proof. This is equivalent to proving that, given two Neimeier lattices,
they are isomorphic if each doesn’t have any roots. We essentially want
to show that two norm2 0 primitive vectors of II25,1 are conjugate under
Aut(II25,1). If D is a fundamental domain (as in Borcherds’s paper)
and only has one vector like this, then the Leech lattice is unique. The
vector in D is unique, because the roots of D generate the Lorentzian
lattice II25,1. [Bor99] �

1i.e., cardinality maximal linearly independent subset
2The norm essentially means the square of the distance from the origin of a

vector when we embed the Leech lattice into R24.
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There are some more interesting things related to the Leech lattice
that we can look at.

Lemma 2.6. A 26-dimensional unimodular lattice L with no vectors
of norm 1 has a characteristic vector of norm 10. [Bor99]

In order to use this Lemma for another proof, we’ll need some more
definitions:

Definition 2.7. Let V be a vector space over F with bilinear form3

B. Let u be left-orthogonal to v, and let v be right-orthogonal to u
when B(u, v) = 0 (a matrix A is said to be left/right-orthogonal if we
have AKA = I or AAK = I). If W is a subset of V , the left-orthogonal
complement W⊥ is

W⊥ = {x ∈ V : B(x, y) = 0 for all y ∈ W}.

Definition 2.8. Loosely speaking, the Weyl group is a subgroup of
the isometry group of the root system4. The hyperplanes that are
orthogonal to these roots divide A ⊗ R 5 into regions. These regions
are called Weyl chambers.

Next, let’s see another lemma; note that the type of vector is the
smallest inner product of the vector with a norm 0 vector of II25,1.

Lemma 2.9. The lattice L (as defined in Lemma 2.6) has no roots iff
u⊥ has no roots and u has type at least 5. [Bor99]

Proof. Note that L must have roots if u⊥ has roots. It can be shown
(with mild difficulty and several other definitions) that if u has type
at most 4, then L has roots. Also, if L has some root a and contains
u⊥ + c for some c, then either of the following could be the case: (1) a
has norm 2 and inner product 0, ±2, ±4 with c, or (2) a has norm 1
and inner product ±1, ±3 with c. Either way, u⊥ has roots, or u has
type at most 4. �

In Borcherds’s paper, there are two other lemmas (Lemma 5.5.4 and
Lemma 5.5.5), but we will assume their statements, as they are a bit
more challenging.

Theorem 2.10. There exists a unique 26-dimensional unimodular lat-
tice L with no roots. Its automorphism group acts transitively on the

3A bilinear form can be thought of as a bilinear map V × V → S, with S being
the field of scalars

4Think of the root system as a configuration of vectors in Euclidean space.
5Tensor product. Essentially, we have a lattice, which is isomorphic to Zn. The

tensor product with R is Rn (with the same basis).
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624 characteristic norm 10 vectors of L and the stabilizer of such a
vector (call it V ) has order 53 · 2 · 120. The automorphism group has
order 28 · 32 · 54 · 13.

Proof. We know from Lemma 2.6 that L has a characteristic vector
of norm 10. One can fairly easily show that L is unique and that its
automorphism group acts transitively on the characteristic vectors of
norm 10. The number of characteristic vectors of norm 10 is 624. The
stabilizer of V is isomorphic to Aut(II25,1, u). This is a group of the
form 53 · 2 · S5 (S5 is the group of all permutations on a set of five
elements). [Bor99] �

Now let’s relate the Leech lattice to the Conway groups.

3. Relating the Conway groups to the Leech lattice

Now we can get to the cool stuff, after all those definitions! One
thing to note is that there is another Conway group Co0, with order
8, 315, 553, 613, 086, 720, 000.

Remark 3.1. I did not earlier introduce Co0 when I was introducing
the other Conway groups Co1, Co2, and Co3. This is because Co0 is
not simple, and it should not be thought of as entirely alike the others.
However, it still has an interesting property.

Proposition 3.2. The Conway group Co0 is the group of automor-
phisms of Λ24 (addition and inner-product 6).

Here’s an interesting way that the Conway groups Co0 and Co1 relate
to each other.

Proposition 3.3. Let Z(G) be the center of Co0. We can express Co1
as the quotient of Co0 by Z(G). [Bor99]

For Co2 and Co3, we have the following proposition.

Proposition 3.4. We have that Co2 and Co3 are isomorphic to sub-
groups of Co1.

The Conway groups are often considered the most important spo-
radic simple groups. Sadly, John Conway passed away on April 11,
2020. He is well-known for the Game of Life, which he invented. Also,
he is remembered for his contributions to finite group theory, com-
binatorial game theory, coding theory, and numerous other areas of
mathematics.

6Here, inner-product means the integer value which equals 1/8 the sum of prod-
ucts of the coordinates of two vectors.
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4. Constructing Mathieu groups as automorphism groups
of Steiner systems

Next we will talk a bit about Mathieu groups, which are another
well-known type of sporadic simple group. They are the five smallest
sporadic finite simple groups. Let’s briefly look at the order of these
Mathieu groups: The Mathieu group M11 is the sporadic simple group
of order

24 · 32 · 5 · 11 = 7920.

The Mathieu group M12 has order

26 · 33 · 5 · 11 = 95040

(note that this is equal to 12 · 11 · 10 · 9 · 8). The Mathieu group M22

has order
27 · 32 · 5 · 7 · 11 = 443520.

The Mathieu group M23 has order

27 · 32 · 5 · 7 · 11 · 23 = 10200960.

Finally, M24 has order

210 · 33 · 5 · 7 · 11 · 23 = 244823040.

But before we can offer a proper definition/construction of the Mathieu
groups, we must first define Steiner systems.

Definition 4.1. For integers j < k < n, a collection S1, S2, S3, . . . , SN

of distinct subsets of {1, 2, 3, . . . , n} is called a (j, k, n)-Steiner system
if it satisfies the following:
• For all i, we have |Si| = k.
• For each subset T ⊂ {1, 2, 3, . . . , n} where |T | = j, there is some
unique value i such that Si ⊃ T . [RS11]

Here is the formal construction of the Mathieu groups using Steiner
systems:

Definition 4.2. We can define the Mathieu groups using Steiner sys-
tems:

•M11 = {σ ∈ S11 : σ(S) ∈ S(4, 5, 11) for all S ∈ S(4, 5, 11)}
•M12 = {σ ∈ S12 : σ(S) ∈ S(5, 6, 12) for all S ∈ S(5, 6, 12)}
•M22 = {σ ∈ S22 : σ(S) ∈ S(3, 6, 22) for all S ∈ S(3, 6, 22)}
•M23 = {σ ∈ S23 : σ(S) ∈ S(4, 7, 23) for all S ∈ S(4, 7, 23)}
•M24 = {σ ∈ S24 : σ(S) ∈ S(5, 8, 24) for all S ∈ S(5, 8, 24)}.

[RS11]
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As we can see, the most significant Steiner systems for the construc-
tion of Mathieu groups are S(4, 5, 11), S(5, 6, 12), S(3, 6, 22), S(4, 7, 23),
and S(5, 8, 24). For more information on Mathieu groups, see Simon
Rubinstein-Salzedo’s paper, from which I have paraphrased/cited the
previous few definitions.

5. The Monster group

At this point, we’ve looked at the Conway groups and a little bit
about Mathieu groups. Another significant group is the Monster group.

Definition 5.1. The Monster group and Monstrous Moonshine, which
we will denote M, is the largest sporadic simple group; it has order

246×320×59×76×112×133×17×19×23×29×31×41×47×59×71

= 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

This is approximately 8× 1053.

Note that there is also a ”baby monster” group, which is the second
largest (after the Monster/friendly giant) of the sporadic simple groups.
One interesting thing about the Monster is that it has 19 of the other
sporadic groups as either subquotients or subgroups. Those 19 (or 20,
if you count the Monster itself) groups make up the happy family. The
other 6 are called pariahs. Now let’s talk about monstrous moonshine,
a famous phenomenon whose name was coined by Conway and Norton.
First, we will define the j-function (which I have written one of the other
papers on).

Definition 5.2. The j-function is a function defined on all τ ∈ C (τ
can be thought of as an isomorphism class of an elliptic curve), and we
have

j(τ) = 123 · g2(τ))3

g2(τ)3 − 27g3(τ)2
,

where

g2(τ) = 60
∑

m,n∈Z
(m,n)6=(0,0)

(m+ nτ)−4

and
g3(τ) = 140

∑
m,n∈Z

(m,n)6=(0,0)

(m+ nτ)−6 .

The modular discriminant7 is defined as

∆(τ) = g2(τ)3 − 27g3(τ)2

7The modular discriminant is an infinite sum over certain lattice.
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in this context. [Sch10]

We refer to the strange relation between the Monster group and
the j-function as monstrous moonshine. [DMC15] Now let’s look at
some cool relationships between the j-function and the Monster group,
because the j-function is crucial to monstrous moonshine.

Theorem 5.3. Assume we have an infinite-dimensional graded algebra
of the Monster group. The coefficients of the positive powers of q in the
q-expansion of j(τ) are the dimensions of the graded part of the graded
algebra. [Sch10]

Definition 5.4. Abstractly speaking, the Jabobi identity tells us how
the order of evaluation (layout of parentheses) will work for a given
operation.

Definition 5.5. A Lie algebra is a collection of vectors (vector space)
g having a non-associative operation with an alternating bilinear map
satisfying the Jacobi identity.

To show an interesting fact about the monster, we first define the
following:

Definition 5.6. A Kac-Moody algebra is a (infinite-dimensional) Lie
algebra which is defined by generators and certain relations (using a
generalized Cartan matrix, but that is not so important here). A gen-
eralized Kac-Moody algebra is also a Lie algebra, and the main differ-
ence is that, unlike the regular Kac-Moody algebra, it can have simple
imaginary roots.

Now we have an interesting theorem.

Theorem 5.7. The Monster Lie algebra8 is an infinite-dimensional
generalized Kac–Moody algebra. The vector (1,−1) gives this algebra
one real simple root.

6. Summary

In this paper, we learnt about the sporadic groups; specifically, we
focused on the Conway, Mathieu, and monster groups. In studying
these, we saw unimodular lattices (specifically, the Leech lattice and
Neimeier lattices) and looked at the proof of a related theorem. Then
we related the Conway groups to the Leech lattice. We also saw Steiner
systems in our study of Mathieu groups, and we ended by looking at
the Monster group (specifically, the Monster Lie algebra).

8The Monster vertex algebra is loosely defined as an algebra related to the mon-
ster group, and it was used to prove the connection between the j-function and the
monster group.
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