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1 Introduction

There are many functions for which an antiderivative is important and applicable. For example,
the logarithmic integral function Li(x) =

∫ x
2

dt
log(t)

is used in analytic number theory, and notably

the prime number theorem. Another example is the Gaussian integral of e−x
2
, which comes up

as the bell curve in probability. However, it is not possible to express these functions in terms
of elementary functions, which loosely means functions that are expressible by a composition
of algebraic, exponential and logarithmic operations.

The approach taken to classify the complex functions with an elementary antiderivative will
be to consider differential fields, which are fields that generalize the notion of the derivative,
that is, the addition and product rule for derivatives of real functions. Then, finding antideriva-
tives will equate to finding solutions in elementary field extensions. We define elementary field
extensions, show that differential fields of characteristic 0 can be uniquely extended in an ele-
mentary extension field and show that elementary extensions are closed under differentiation.
This gives the necessary framework to work with differential field extensions.
We then state and prove Liouville’s Theorem, which is one of the key steps in classifying the
integrable functions. It gives conditions on what elements α in a field F can yield solutions
for the differential equation y′ = α in an elementary extension field of F. The centerpiece of
the argument is a corollary to Liouville’s Theorem, the Integrability Criterion, which gives a
necessary and sufficient condition for a complex function of a single variable to be elementary
integrable.

Using the Integrability Criterion, we look at famous examples of functions such as e−x
2

and
1

log(x)
and show that they are not elementary integrable function by using the previous corollary.

Finally, we give an overview of the Risch Algorithm, which provides a method of computing
the elementary integral of a function, if it exists.

In order to fully appreciate the following results, the reader should be familiar with single-
variable calculus, particularly with basic differentiation and integration techniques. More im-
portantly, the reader should be familiar with basic field theory: understanding what a field is
and understanding field extensions. To understand one section of a proof, the reader will need
to be familiar with ring homomorphisms and ideals. In order to understand how trigonometric
functions can be expressed with exponentials and logarithms, it is helpful to be familiar with
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Euler’s formula eix = i sin(x)+cos(x). A section of the proof of Liouville’s Theorem assumes the
Fundamental Theorem of Symmetric Polynomials, which states that any symmetric polynomial
in variables x1, . . . , xn is expressible solely in terms of elementary symmetric p1, . . . , pn, where
pi =

∑
j1<j2<···<ji τj1τj2 . . . τji . Complex analysis is not necessary, though an understanding of

it may help rigorize some aspects of the argument. We mostly rely on algebraic techniques to
prove our results.

It is our goal in this paper to completely prove each relevant result. However, the casual
reader may skip some of the proofs and still appreciate the general argument.

2 Differential Fields

Definition 2.1. Let F be a field. A map D : F → F is a derivation on F if, for all a, b ∈ F,
D(a + b) = D(a) + D(b) and D(ab) = aD(b) + D(a)b. We also denote D(a) as a′. We call a
field F with a derivation DF a differential field. A differential subfield is a subfield closed under
differentiation. The set of constants of F are the elements which have derivative 0. We use the
notation D(x) and x′ interchangeably.

Remark 2.2. We are inspired by ordinary calculus to create a generalization of the derivative,
our rule D(ab) = aD(b) +D(a)b, Leibniz’s rule, being analogous to the product rule. Creating
this algebraic definition of the derivative will allow us to determine a precise (algebraic) criterion
for integrability in elementary terms.

Proposition 2.3. For all differential fields F, we have:

1. D(1) = 0

2. Power rule: D(xn) = nxn−1D(x) for all n ∈ Z, x ∈ F

3. Quotient rule: D(x
y
) = yD(x)−xD(y)

y2
for all x, y ∈ F

Proof.

1. D(1) = D(1 · 1) = 1 ·D(1) +D(1) · 1 = D(1) +D(1), which implies D(1) = 0.

2. We prove this for positive n by induction. The base case n = 1 is clearly true, as
D(x1) = 1 · x0 ·D(x). For the inductive step, suppose that D(xn−1) = (n− 1)xn−2D(x).
Then:

D(xn) = D(xn−1 ·x) = xn−1 ·D(x)+D(xn−1) ·x = (xn−1+(n−1)xn−1)D(x) = nxn−1D(x),

as desired. We proceed to prove this for negative n as well. Consider an element x−n,
with n ∈ Z+. We then have:

0 = D(1) = D(xn · x−n) = xnD(x−n) +D(xn)x−n = xnD(x−n) +D(xn)x−n

Solving for D(x−n) gives us:

D(x−n) = −D(xn)x−2n = −nxn−1D(x)x−2n = −nx−n−1D(x),

as desired.
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3. We treat x
y

as the product x · y−1 and simplify:

D
(x
y

)
= D(x · y−1) = xD(y−1) + y−1D(x) = −xy−2D(y) + y−1D(x) =

yD(x)− xD(y)

y2
.

Thus we have that the rules of the derivation are analogous to the derivative rules in calculus.

Proposition 2.4. The set of constants is a differential subfield of F.

Proof. It is easy to verify that the field of constants is closed under addition, multiplication,
inversion and differentiation, so it is a differential subfield.

Example. D(a) = 0 for all a ∈ F is always a derivation, but it is not a very interesting one.
The set of constants is just all of F.

Example. It follows from the fact that D(1) = 0 and from the additive property of the derivation
that if the integers are contained in a certain field, then the derivation of any integer is 0. It
further follows from the quotient rule that if the rationals are contained in a certain field, then
the derivation of any rational number is 0.

Example. C(x) under the d/dx derivation is a differential field. The constants are C.

Example. Q(e) under a “d/de” derivation is a differential field. (By this we mean the derivative
of e would be 1 and the derivative of e17 would be 17e16, etc). The constants are Q.

3 Differential and Elementary Field Extensions

Definition 3.1. A differential extension field of a differential field F is an extension field which
extends the derivation on F.

F(t)/F is a logarithmic extension if there exists x ∈ F with t′ = x′

x
. We say F(t)/F is an

exponential extension if there exists some x ∈ F with t′ = tx′.

Remark 3.2. Our definition is analogous to exponentials and logarithms in calculus because
they satisfy the same differential equations.

Definition 3.3. A differential extension field E of a differential field F is elementary if it can
be formed by a sequence of algebraic, logarithmic, or exponential extensions. In other words,
there exists a tower of differential fields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ E

such that each Fi/Fi−1 is an algebraic, logarithmic or exponential extension. A function is said
to be elementary if it is in an elementary extension of C(x).

Example. Trigonometric functions are elementary. Note that sin(x) = eix−e−ix

2i
follows Euler’s

Formula and can be inverted to yield arcsin(x) = −i log(ix +
√

1− x2). Similar formulas can
be found for cos(x), tan(x), arccos(x), and arctan(x).
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Remark 3.4. Note that some elementary functions are not familiar to us. For example, f(c)
defined to be the unique real root of the polynomial x17 + 17x+ c is an elementary function.

We will use the following theorem when proving Liouville’s Theorem in the next section.

Theorem 3.5. For a differential field F of characteristic 0 and an algebraic extension field
K/F, a derivation on F can be uniquely extended to K.

Proof. Let α ∈ K, and let f(X) = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ F[X] be the minimal

polynomial for α over F. Define M0,M1 : F[X]→ F[X] by:

M0

( m∑
i=0

biX
i
)

=
m∑
i=0

b′iX
i,

M1

( m∑
i=0

biX
i
)

=
m∑
i=1

ibiX
i−1.

Note that M1 is the formal derivative, as in ordinary calculus. Further note that (M1f)(X) is
nonzero because F has characteristic 0 and has lesser degree than f , so (M1f)(α) 6= 0. If there
does exist an extension of the derivative to K, we then have

f(α)′ = nαn−1α′ + (a′n−1α
n−1 + (n− 1)an−1α

n−2α′) + · · ·+ (a′1α + a1α
′) + a′0

= (M1f)(α)α′ + (M0f)(α).

We thus have 0 = 0′ = f(α)′ = (M1f)(α)α′ + (M0f)(α), so α′ = − (M0f)(α)
(M1f)(α)

. Therefore, the
uniqueness of an extension of the derivation to K follows from its existence.

We now prove existence. Let K = F(α), for a particular α ∈ K. For some g(X) ∈ F[X], to
be determined later, define the map M : F[X]→ F[X] to be given by

MA = M1A · g(X) +M0A,

for any A ∈ F[X]. (Note that this definition can be motivated by the above expression for
f(α)′; g(X) is analogous to α′.) We have that M(A + B) = MA + MB and M(AB) =
(MA)B + A(MB), since, as it can be easily verified, these identities hold for M0 and M1. In
addition, we have Db = b′ for all b ∈ F.

Consider the surjective ring homomorphism R : F[X] → F[α], which sends any element of
F to itself and sends X to α. Since F[α] = F(α) = K (because α is algebraic), M will induce
a derivation on K extending that on F if M maps the kernel of R to itself. But this kernel is
the ideal F[X]f(X), that is, all multiples of f(X), where f(X) is the minimal polynomial of
α over F. Now, the condition that M map F[X]f(X) onto itself is equivalent to that M map
f(X) to a multiple to itself, which in turn is equivalent to that Mf be an element of F[X] of
which α is a root, which finally is equivalent to Mf(α) = M1f(α) ·g(α)+M0f(α) = 0. Because
M1f(α) 6= 0 and F(α) = F[α], we can solve for g(α). This gives us a desired g(X) ∈ F[X] that
maps the kernel of R to itself. Therefore, there exists an extension of the derivative from F to
K, and this proves the theorem.
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Example. Let K = Q(
√

17). We show how to compute D(
√

17). The minimal polynomial of√
17 is x2 − 17. We then have that 0 = (

√
17

2 − 17)′ = 2
√

17D(
√

17), and thus D(
√

17) = 0.

Example. Let F = C(x) and K = F(
√
x). We show how to compute D(

√
x) given x′. The

minimal polynomial of
√
x is f(y) = y2−x. We then have that 0 = (

√
x
2−x)′ = 2

√
xD(
√
x)−x′,

so D(
√
x) = x′

2
√
x
.

Corollary 3.6. An elementary extension field of C(x) is closed under ordinary differentiation
given by x′ = 1. In other words, the derivative is indeed a valid derivation on any elementary
extension field of C(x).

Proof. Let K = C(x, f1, f2, ..., fn) be an elementary extension field of C(x). We prove the
corollary by induction on n. For the base case n = 0, the fact that C(x) is closed under
differentiation follows from the additive and multiplicative properties of the derivative and the
quotient rule. For the inductive step, suppose the corollary is true up to some n − 1, that is,
C(x, f1, ..., fn−1) is closed under differentiation. Consider an additional elementary extension
C(x, f1, ..., fn−1, fn). If fn is algebraic, then by the previous theorem, there exists a unique way
to extend the existing derivation to C(x, f1, ..., fn−1, fn), which is the derivative. If fn is an
exponential, then f ′n = fnβ

′ ∈ C(x, f1, ..., fn−1, fn) for some β ∈ C(x, f1, ..., fn−1), and if fn
is a logarithm, then f ′n = β′

β
∈ C(x, f1, ..., fn−1, fn) for some β ∈ C(x, f1, ..., fn−1). Therefore,

C(x, f1, ..., fn−1, fn) is closed under differentiation, and this proves the corollary.

4 Liouville’s Theorem

Lemma 4.1. Let F be a differential field with differential field extension F(t). Suppose F(t)
and F have the same constants and t is transcendental over F.

1. Let t′ ∈ F and f(t) ∈ F[t] with deg(f(t)) > 0. Then f(t)′ ∈ F[t], and deg(f(t)) =
deg(f(t)′) iff the leading coefficient of f(t) is non-constant. Otherwise, if the leading
coefficient of f(t) is constant, deg(f(t)′) = deg(f(t))− 1.

2. Let t′

t
∈ F. Then for all nonzero a ∈ F and nonzero n ∈ Z, (atn)′ = htn for some nonzero

h ∈ F . Moreover, if f(t) ∈ F[t] with deg(f(t)) > 0, then deg(f(t)) = deg(f(t)′). Also,
f(t)′ = cf(t) for some c ∈ F iff f(t) is a monomial.

Proof.

1. Suppose t′ ∈ F. Let f(t) = ant
n + an−1t

n−1 + · · ·+ a0 ∈ F [t], and an 6= 0. Then

f(t)′ = (a′nt
n + nant

′tn−1) + (a′n−1t
n−1 + (n− 1)an−1t

′tn−2) + · · ·

which clearly lies in F[t] as t′ ∈ F. The leading coefficient of f(t)′ is just a′n, so deg(f ′(t)) =
deg(f(t)) iff a′n 6= 0, ie. an is not constant. Otherwise, deg(f ′(t)) = n−1 = deg(f(t))−1.

2. On the other hand, if t′

t
= b ∈ F, then we have (atn)′ = a′tn + nat′tn−1 = (a′ + nab)tn.

This cannot be equal to zero, as t is transcendental over F. Thus, if deg(f(t)) > 0,
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then deg(f(t)) = deg(f(t)′). Lastly, if f(t)′ = cf(t), then (a′ + nab)/a = c, for any
a ∈ {a0, a1, · · · , an}. Choosing two distinct coefficients ap, aq gives

a′p + papb

ap
=
a′q + qaqb

aq
,

or (a′p + papb)aq = (a′q + qaqb)ap. Thus, taking the derivative of the function aptp

aqtq
gives us(

apt
p

aqtq

)′
=

(a′p + papb)aqt
p+q − (a′q + paqb)apt

p+q

a2qt
2q

= 0,

which means aptp

aqtq
is a constant z, which is in F because F and F(t) have the same constants.

However, then apt
p − zaqtq = 0, contradicting the given fact that t is trascendental.

We are now ready to prove the main result of this section, which provides a necessary (and
sufficient, though this is not so important) condition for the existence of an antiderivative of
an element of a field lying in an elementary extension field.

Theorem 4.2. (Liouville) Let F be a differential field of characteristic 0. Let α ∈ F. If y′ = α
has a solution y in an elementary extension of F with the same constants, then there exist
constants c1, · · · , cn and elements u1, · · · , un, v ∈ F such that

α = v′ +
n∑
i=1

ci
u′i
ui
.

Proof. The given elementary extension of F consists of a tower of algebraic, logarithmic or
exponential extensions

F ⊂ F (t1) ⊂ F (t1, t2) ⊂ · · · ⊂ F (t1, t2, . . . , tN)

all with the same constants. We prove the theorem by induction on N . The base case N = 0 is
obvious (simply let v = y and all ci, ui = 0), so assume that N > 0 and the theorem holds for
N − 1. Applying the case N − 1 to the fields F(t1) ⊂ F(t1, t2, . . . , tN) gives us an expression for
α in the desired form, but with u1, u2, . . . , un, v ∈ F(t1). We wish to find a similar expression,
but with u1, u2, . . . , un, v ∈ F. In the following argument, we let t = t1.

We first consider the case where t is algebraic with minimal polynomial f ∈ F[X]. There
are then polynomials U1, U2, . . . , Un, V ∈ F[X] such that U1(t) = u1, U2(t) = u2, . . . , Un(t) =
un, V (t) = v. (This follows from applying the Euclidean Algorithm to polynomials in F[X].) Let
τ1(= t), τ2, . . . , τk ∈ K be the distinct conjugates of t over the splitting field of f . By Theorem

3.5, there is a unique extension of the derivation of F to K. Thus, since α = V (t) +
∑n

i=1
Ui(t)

′

Ui(t)

has degree 0 with respect to t and each τj has the same minimal polynomial over F as t, we
have

α = V (τj)
′ +

n∑
i=1

ci
Ui(τj)

′

Ui(τj)
,
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for each j = 1, 2, . . . , k. It follows that

α =
1

k

k∑
j=1

(
V (τj)

′ +
n∑
i=1

ci
Ui(τj)

′

Ui(τj)

)

=
1

k

k∑
j=1

V (τj)
′ +

n∑
i=1

ci
k

k∑
j=1

Ui(τj)
′

Ui(τj)

=

(
V (τ1) + · · ·+ V (τk)

k

)′
+

n∑
i=1

ci
k
· (Ui(τ1)Ui(τ2) . . . Ui(τk))

′

Ui(τ1)Ui(τ2) . . . Ui(τk)
.

Each Ui(τ1)Ui(τ2) . . . Ui(τk) as well as V (τ1)+· · ·+V (τk) is a symmetric polynomial in τ1, . . . , τk.
Let P be an arbitrary such polynomial, and let p1, . . . , pk be the elementary symmetric functions
in τ1, . . . , τk. That is,

pi =
∑

j1<j2<···<ji

τj1τj2 . . . τji

By the Fundamental Theorem of Symmetric Polynomials, P can be expressed as a series of
sums and products of elements of F and these elementary symmetric functions. But by Vi-
eta’s formulas, pi is the (i + 1)th coefficient of f , which is in F. So P ∈ F. Therefore,
(Ui(τ1)Ui(τ2)...Ui(τk))

′

Ui(τ1)Ui(τ2)...Ui(τk)
, V (τ1)+···+V (τk)

k
∈ F, and we have found a desired expression for α.

Now, suppose t is instead transcendental. Then we have

α = v(t)′ +
n∑
i=1

ci
ui(t)

′

ui(t)
,

with u1(t), u2(t), . . . , v(t) ∈ F(t). We examine an arbitrary ui(t). Let ui(t) = δp1(t)
e1p2(t)

e2 . . . pr(t)
es ,

where δ ∈ F, e1, e2, . . . , es ∈ Z and p1(t), p2(t), . . . , pr(t) are distinct, monic and irreducible ele-
ments of F[t]. Then:

ui(t)
′

ui(t)
=

(δp1(t)
e1p2(t)

e2 . . . pr(t)
es)′

δp1(t)e1p2(t)e2 . . . pr(t)es

=
δ′

δ
+

s∑
j=1

(pj(t)
ej)′

pj(t)ej

=
δ′

δ
+

s∑
j=1

ej
pj(t)

′

pj(t)

Thus, after decomposing each ui(t)
′

ui(t)
in such a way, we may assume that each ui(t) is a monic

irreducible element of F[t] or an element of F, and u1(t), u2(t), . . . , un(t) are all distinct. Next,
consider the partial fraction decomposition of v(t), which expresses v(t) as the sum of an ele-

ment of F[t] and various terms of the form g(t)
f(t)r

, where f(t) is a monic irreducible element of

F[t], r is a positive integer, and g(t) is a nonzero element of F[t] with degree less than that of
f . We now split into two subcases: t is a logarithm of an element of F, and t is an exponential
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of an element of F.

We begin with the former subcase, so that t′ = a′

a
, for some a ∈ F. Let f(t) be an arbitrary

monic irreducible element of F[t]. By Part 1 of Lemma 4.1, f(t)′ ∈ F[t] with degree one less
than that of f(t), so that f(t) does not divide f(t)′. In fact, f(t) and f(t)′ share no common

factors, since f(t) is irreducible over F. Thus, if ui(t) = f(t) for some i, then (ui(t))
′

ui(t)
is already in

lowest terms, with denominator f(t). Now, if a term g(t)
f(t)r

were to occur in the partial fraction

decomposition of v(t) described above, with r > 0 and maximal among terms having f(t) in

the denominator, then v(t)′ would contain the term
(
g(t)
f(t)r

)′
= −rg(t)f(t)′

f(t)r+1 . Because f(t) does

not divide g(t) or f(t)′ and f(t) is irreducible, we would have that f(t) does not divide this
numerator, and a term with denominator f(t)r+1 would appear in v(t)′, with r + 1 >= 2.
Since one of the ui(t)’s can have f(t) in the denominator at most once, this would imply that
α consists of a term containing f(t), which is impossible. Thus, f(t) does not appear in the
denominator of v(t). In addition, in order for α not to contain f(t), f(t) cannot be equal to
ui(t), for any i. Since f(t) was chosen arbitrarily, each ui(t) ∈ F and v(t) ∈ F[t]. But then v(t)′

must be in F, so Part 1 of Lemma 5.1 implies that v(t) = ct+ d, with c a constant and d ∈ F.
Therefore,

α =
n∑
i=1

(ui)
′

ui
+ v(t)′

=
n∑
i=1

(ui)
′

ui
+ ct′ + d′

=
n∑
i=1

(ui)
′

ui
+ c

a′

a
+ d′

gives us an expression for α in the desired form.

Now, suppose that t is the exponential of an element of F, so that t′

t
= b′, for some b ∈ F.

By Part 2 of Lemma 4.1, if f(t) is a monic irreducible element of F[t] other than t itself, then
f(t)′ ∈ F and f(t) does not divide f(t)′. The very same reasoning given above shows that f(t)
cannot occur in the denominator of v(t), and no ui(t) is equal to f(t). Thus each ui(t) is in F,

with the possible exception that one of these may be t. Because each ui(t)
′

ui(t)
∈ F (recall that t′

t

is in F), we have v(t)′ ∈ F. Part 2 of Lemma 4.1 thus implies that v(t) ∈ F. If each ui(t) ∈ F
without exception, then α is already written in the desired form, and we are done. Otherwise,
there is exactly one ui(t), without loss of generality let it be u1(t), that is equal to t. Then

α = v′ + c1
t′

t
+

n∑
i=2

ci
(ui)

′

ui

= (c1b+ v)′ +
n∑
i=2

ci
(ui)

′

ui
,

with u2, u3, . . . , un, c1b + v all in F, which is in the desired form. This completes the proof of
the theorem.
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Remark 4.3. In general, the condition that F and its elementary extension field have the same
constants is important. For example, consider F = R(x), and α = 1

x2+1
. We know that

∫
1

x2+1
dx

is in some elementary extension field of R(x), but it turns out we cannot write 1
x2+1

in the form
given by Liouville’s Theorem.

To prove this, suppose for contradiction that 1
x2+1

can be written in the desired form, with

ui, v ∈ R(x) and constants ci ∈ R, that is, 1
x2+1

=
∑n

i=1 ci
(ui)

′

ui
+ v′. By the same reasoning as

given in the transcendental case of Liouville’s Theorem above, we may assume that each ui is
a monic and irreducible element of R(x). Next, note that if x2 + 1 appears as a factor of the
denominator of v (where the numerator and denominator share no common factors), then it
appears as a factor of the denominator of v′ with multiplicity greater or equal to 2. But this is
impossible, since it appears in the denominator of the left-hand side with multiplicity 1. Thus,
x2 + 1 does not appear in the denominator of v, and hence it also does not appear in that of v′.

Since the right-hand side must contain a factor of x2 + 1 in its denominator, one of the
ui’s must be equal to x2 + 1; without loss of generality, let it be u1. We subtract the term
c1

(u1)′

u1
= 2c1x

x2+1
from both sides, which gives us 1−2c1x

x2+1
=
∑n

i=2 ci
(ui)

′

ui
+ v′. The right-hand side

no longer contains a factor of x2 + 1 it its denominator, so neither does the left-hand side. But
this implies that x2+1 divides 1−2c1x, a polynomial with lesser degree, which is a contradiction.

It turns out that the converse of Liouville’s Theorem is also true, and this result is straight-
forward.

Corollary 4.4. (Integrability Criterion) For f, g ∈ C(x) with f 6= 0 and g not a constant,
f(x)eg(x) can be integrated in elementary terms iff f(x) = r′(x)+g′(x)r(x) for some r(x) ∈ C(x).

Proof. If f(x) = r′(x) + g′(x)r(x) for some rational function r(x) ∈ C(x), then we have that
[r(x)eg(x)]′ = r′(x)eg(x) + g′(x)r(x)eg(x) = f(x)eg(x), so f(x)eg(x) does have an elementary an-
tiderivative.

We now prove the converse. First, in order to be able to apply the lemma, we show that eg

is transcendental over C(x). Assume for the sake of contradiction that this is not the case, so
that eg has a minimal polynomial f with

f(eg) = eng + a1e
(n−1)g + · · ·+ an,

where a1, . . . , an ∈ C(x). Then differentiating gives us:

ng′eng + (a′1 + (n− 1)a1g
′eng + · · ·+ a′n = 0.

Because f is minimal, this second equation is proportional to the first, so that ng′ = (an)′

an
.

If (an)′ is nonzero, then an can be expressed as the power product of linear terms of C[z].

It follows that we can decompose (an)′

an
into a sum of fractions with constant numerators and

linear denominators. (We can do this in the same way the we decomposed ui(t)
′

ui(t)
in Liouville’s

Theorem.) If g is a polynomial, then clearly ng′ has no linear denominator. Otherwise, suppose
a term c

f(x)b
appears in its partial fraction decomposition, where c is a constant, f(x) is linear,
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and b ≥ 1. Then a term −nbcf(x)′
f(x)b+1 appears in the partial fraction decomposition of ng′, with

b + 1 ≥ 2. Thus, regardless, the partial fraction decomposition of ng′ has no term with linear
denominator, whereas (an)′

an
does contain terms with linear denominator, a contradiction. There-

fore, (an)′ = 0, implying that ng′ = 0, contradicting the assumption that g is not constant.
Thus, eg is indeed transcendental.

Let t = eg and F = C(x). If
∫
feg is elementary, we then have

ft = v′ +
n∑
i=1

ci
u′i
ui

where the ci’s in C and the ui’s in F(t). Expand v into partial fractions with respect to F[t]. By
the lemma and the same reasoning as in the last subcase in Liouville’s Theorem, we have that
t is the only possible monic irreducible factor of a denominator in v. We have that v =

∑
bjt

j

for integers j and bj’s in F. Furthermore, we can make it so that all the ui’s are in F or are
distinct monic irreducible elements of F(t). We then have, again by the same exact reasoning as

in Liouville’s, that if ui 6∈ F, then ui = t. In this case,
u′i
ui
∈ F, which means that

∑
i ciu

′
i/ui ∈ F.

For brevity, we will call this sum q in the following computations.

Then we have

ft =
(∑

j

bjt
j
)′

+ q =
∑
j

(b′jt
j + jbjt

′tj−1) + q =
∑
j

(b′jt
j + jbjg

′tj) + q.

The left-hand side and the right-hand side are polynomials in t. Equating the coefficient of t
gives f = b′1 + b1g

′. Thus, r(x) = b1 ∈ F gives us the solution we wanted.

Remark 4.5. Note that this criterion is not merely stating that this differential equation has
a solution, bur rather that there is a solution with the special property that it is a rational
function. If it is satisfied, then the function r(x)eg(x) is an elementary anti-derivative of f.
However, if such a rational function r(x) does not exist that solves the differential equation
r′(x) + g′(x)r(x) = f(x) for some particular f and g, then this verifies that the function
f(x)eg(x) does not have an elementary anti-derivative. In the following examples, we will use
this useful result to show that certain functions, like 1

log(x)
and the Gaussian distribution e−x

2
,

in fact cannot be elementarily integrated.

5 Examples of Nonintegrable functions

First, we prove a lemma which will be used in later examples.

Lemma 5.1. Let P (x) be a polynomial. If r is a root of P with multiplicity e ≥ 1, then r has
multiplicity e− 1 for the polynomial P ′.

Proof. Write P (x) = c
∏n

i=1(x− ri)ei , with r = r1. By the product rule, we obtain

P ′(x) = e1(x− r1)e1−1
n∏
i=2

(x− ri)ei + (x− r1)ei
n∑
i=2

ei(x− ri)ei−1
∏

2≤j≤n
j 6=i

(x− ri)ei

10



The first term has r as a root with multiplicity e1−1, and the second term has r with multiplicity
e1. Thus, r is indeed a root of the entire expression with multiplicity e1 − 1.

We have finally come to the main purpose of our paper: proving that certain functions do
not have an elementary antiderivative!

Example. ef(x) is not integrable in elementary functions for for polynomials f(x) with degree
greater than 2.

Proof. We use the previous corollary. Showing ef(x) is not integrable is thus equivalent to
showing there does not exist a rational function r(x) such that 1 = r′(x) + f ′(x)r(x). Let

r(x) = p(x)
q(x)

for relatively prime polynomials p, q. We then have

1 =
p′(x)q(x)− p(x)q′(x)

q(x)2
+
f ′(x)p(x)

q(x)

which, clearing denominators, is equivalent to

q(x)2 = p′(x)q(x)− p(x)q′(x) + f ′(x)p(x)q(x)

or
p(x)q′(x) = q(x)[p′(x) + f ′(x)p(x)− q(x)],

where we have moved all the multiples of q to the right hand side.

Suppose q(x) has a root r with multiplicity k dividing q(x). Since p(x) and q(x) are relatively
prime, we must have q′(x) has the same root r with multiplicity k, which is a contradiction
because differentiating a function reduces the multiplicity of the roots by one. Thus q(x) must
be a constant, and r(x) a polynomial.

However, r′(x) + f ′(x)r(x) is obviously not a constant polynomial for a polynomial r(x)
since f’(x) is nonconstant, and thus cannot equal 1. Our integral then cannot be elementary.

Specifically, this means that e−x
2

is not integrable in elementary terms.

Example. ex

f(x)
is not integrable in elementary functions for a polynomial f(x) with nonzero

degree.

Proof. By our corollary, we have that this is true if and only if there is a r(x) ∈ C(x) such that
1

f(x)
= r′(x)+r(x). Let r(x) = p(x)

q(x)
for relatively prime p(x), q(x) with q(x) a monic polynomial.

Note that q(x) must be nonconstant since there is obviously no polynomial r(x) solution. We
thus want to show there are no p(x), q(x) such that

1

f(x)
=
p(x)

q(x)
− p′(x)q(x)− p(x)q′(x)

q(x)2
=
p(x)q(x) + p′(x)q(x)− p(x)q′(x)

q(x)2
.

This is equivalent to showing that p(x)q(x) + p′(x)q(x)− p(x)q′(x) does not divide q(x)2. Let
q(x) =

∏n
i=1(x− ri)ei . From Lemma 5.1, this means q′(x) = a(x)

∏n
i=1(x− ri)ei−1 for some a(x)

relatively prime to q(x). Thus, the quotient simplifies to

11



p(x)q(x) + p′(x)q(x)− p(x)q′(x)

q(x)2
=

(p(x) + p′(x))
∏n

i=1(x− ri)ei − p(x)a(x)
∏n

i=1(x− ri)ei−1∏n
i=1(x− ri)2ei

=
(p(x) + p′(x))

∏n
i=1(x− ri)− p(x)a(x)∏n

i=1(x− ri)ei+1

Let the polynomial in the numerator be b(x). Since deg(p′) < deg(p) and deg(a) < deg(q),
p(x)

∏n
i=1(x−ri) has greater degree than the other two terms in b(x). Thus, b(x) isn’t constant.

For any root ri of q(x), we have b(ri) = −p(ri)a(ri) 6= 0 as both p(x), a(x) are relatively prime
to q(x). It follows that b(x) has no common roots with q(x), so b(x) is relatively prime to the
denominator. This means p(x)q(x) + p′(x)q(x)− p(x)q′(x) does not divide q(x)2, as desired.

As a specific example, we have that ex/x is not integrable in elementary terms.

Example. 1
log(x)

is not integrable in elementary functions.

Proof. We show
∫

1
log(x)

is not elementary. Let u = log(x). Then x = eu, and dx = eudu. We

then have
∫

1
log(x)

dx =
∫

eu

u
du. From the preceding example, we know this is not elementary.

Example. ee
x

is not integrable in elementary functions.

Proof. Let u = ex, so du = exdx = udx, or dx = du
u
. Thus,

∫
ee

x
dx =

∫
eu

u
du, which is again

not elementary.

Example. log(log(x)) is not integrable in elementary functions.

Proof. We use integration by parts. Let u = log(log(x)) and dv = dx, so du = 1
x log(x)

dx and

v = x. We then have
∫

log(log(x))dx = x log(log(x))−
∫

x
x log(x)

dx = x log(log(x))−
∫

1
log(x)

dx,
but we already know that this integral is not elementary.

Example. sinx
x

is not integrable in elementary functions.

Proof. Make the substitution z = ix, so dz = i dx. Using the fact that sinx = eix−e−ix

2i
= eu−e−u

2i
,

it is then equivalent to show that
∫

ez−e−z

z
dz is not elementary. Consider the differential field

C(z, t), where t = ez. If this integral is elementary, then Liouville’s Theorem tells us that there
exist c1, . . . , cn ∈ C, u1, . . . , un, v ∈ C(z, t) such that

t2 − 1

tz
=

n∑
i=1

ci
u′i
ui

+ v′.

Let F = C(z), so that ui, v ∈ F[t]. We may assume that the ui’s not in F are distinct monic
irreducible polynomials of F[t]. Again, write v in its partial fraction decomposition form. Using
Lemma 4.1 and reasoning identical to that given in the proof of Liouville’s, the only ui not in F
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would be t, so that
∑n

i=1 ci
u′i
ui
∈ F. The only possible monic irreducible factor of a denominator

in v is t. Writing v =
∑

j bjt
j and letting q =

∑n
i=1 ci

u′i
ui

like in the proof of Corallary 4.4 yields

t2 − 1

tz
=
(∑

j

bjt
j
)′

+ q =
∑
j

(b′jt
j + jbjt

′tj−1) + q =
∑
j

(b′jt
j + jbjg

′tj) + q, or

t2 − 1

z
=
∑
j

(b′jt
j+1 + jbjg

′tj+1) + qt.

Again, both the left-hand side and right-hand side are now polynomials in t. Equating the
coefficient of t2 gives us 1

z
= b′1 + b1, which by a preceding example is not possible. Thus,∫

sinx
x
dz is not elementary.

6 Risch’s Algorithm

As we have seen in the examples from the previous section, the Integrability Criterion resulting
from Liouville’s Theorem helps show that many elementary functions do not have an elemen-
tary integral. The general problem of elementary integration is whether given any elementary
complex function of a single variable, there exists an elementary integral of this function, and
if so, how to construct it. Risch’s algorithm provides a constructive solution to this general
problem. The algorithm looks for an integral of the form given in Liouville’s Theorem.

Given an elementary function f(x), Risch’s algorithm first constructs a field K containing
all the constants of f, then the rational function field K(x), and finally builds a tower L =
K(x)(g1, · · · , gm), where the gi are all the elementary functions needed to express f.

Example. To find
∫

cosxdx, we first rewrite cos x as eix+e−ix

2
, so the constant field is K = Q(i),

and the tower is K(x)(g), where g = eix. The integrand then becomes (g2 + 1)/(2g), which is
a rational function in g over the field F = K(x).

Once the tower is found such that f ∈ K(x)(g1, g2, · · · , gm), then there are four cases:

1. m = 0, the base case, so f ∈ K(x) is just a rational function of x.

2. gm is transcendental and logarithmic over F = K(x)(g1, g2, · · · , gm−1).

3. gm is transcendental and exponential over F = K(x)(g1, g2, · · · , gm−1).

4. gm is algebraic over F = K(x)(g1, g2, · · · , gm−1).

Risch resolved each of these cases separately. The base case is more straightforward, so we
outline it here:

For the base case, take a partial fraction decomposition of f = P + A/D, where P,A,D ∈
K[x], and deg(A) < deg(D). Let D =

∏
P ei
i be a prime factorization of D over K. Then further

decomposing A/D yields: ∫
f =

∫
P +

∫ ( n∑
i=1

n∑
j=1

Aij

P j
i

)
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For each i, j, we can find Bij, Cij ∈ K[x] using the extended Euclidean Algorithm such that

BijP
′
i + CijPi =

Aij
1− j

.

Integrating by parts gives us∫
Aij

P j
i

=

∫
Bij(1− j)P ′i

P j
i

+

∫
Cij(1− j)Pi

P j
i

=
Bij

P j−1
i

−
∫

B′ij

P j−1
i

+

∫
(1− j)Cij
P j−1
i

Thus, repeatedly performing this reduction, we are left with integrals of the form
∫

Ei

Pi
, where

the Pi are irreducible, and deg(Ei) < deg(Pi). Then we can compute a factorization of Pi over
the algebraic closure of K, ie. Pi =

∏
(x− aij), and use this factorization to decompose each of

the Ei

Pi
terms. We thus have∫

Ei
Pi

=

∫ ∑
j

bij
x− aij

=
∑
j

bij log(x− aij),

which is elementary, so this completes the base case of the algorithm.

Similar methods and more advanced techniques can be used to find explicit forms for the
logarithmic, exponential, and algebraic cases as well. For the logarithmic and and exponential
cases, the same idea is to write a partial fraction decomposition for f, ie. f = P + A/D, but
in these cases further work is needed to show that

∫
P is elementary. Liouville’s Theorem is

used in the penultimate step of exponential and logarithmic cases to show that either an ele-
mentary integral does not exist for P (and thus f) or, otherwise, the construction gives a valid
elementary antiderivative. The algebraic case is notably more difficult to resolve, and requires
knowledge of algebraic curves.

Risch’s algorithm has been steadily improved by computer scientists and mathematicians.
It is a milestone in computational mathematics. Risch Algorithm forms a basic framework of
symbolic integration in modern calculators like Wolfram.
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