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Abstract

The Fundamental Theorem of Classical Galois Theory shows that for finite Galois
extensions E/F , there exists a one-to-one correspondence between the intermediate
fields of this extension and the subgroups of the Galois group Gal(E/F ). This theorem,
however, reveals nothing about the nature of infinite Galois extensions. It is natural
to wonder, therefore, when, if at all, the Classical Galois Correspondence holds for
infinite fields. After introducing some preliminaries involving topology and category
theory, this paper will examine the nature of infinite Galois extensions as inverse limits
equipped with the Krull Topology, which enables the use of the sophisticated techniques
used in Classical Galois Theory.

1 The Finite Galois Correspondence

Theorem 1.1. The Fundamental Theorem of Finite Galois Theory Suppose E/F is a finite
Galois extension, and let Gal(E/F ) be its corresponding Galois group. Then, consider the
following map:

Φ : {H ≤ Gal(E/F )} → {K | F/K/E}
H 7→ EH ,

and the map

Ψ : {K | F/K/E} → {H ≤ Gal(E/F )}
K 7→ Gal(E/K).

Then, the following properties hold:

(i) Φ ◦Ψ = e, and Φ is onto, while Ψ is one-to-one.

(ii) If the field extension E/F is finite, then both Φ and Ψ are bijective, from which it
follows that Φ ◦Ψ = Ψ ◦ Φ = e.

(iii) Suppose there exists the tower E/K/F for some intermediate field K. Then the ex-
tension K/F is normal iff Gal(E/K)CGal(E/F ).
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Proof.

(i) Suppose that K is the intermediate field of the extension E/F . We shall show that
E/K is Galois, from which it follows that H = AutK(E) is in fact a Galois group.
The normality of E/F extends to the normality of E/K, so showing the separability
of E/K will suffice. Consider some element a ∈ E and the maximal set of elements
f1, f2, . . . , fn ∈ H such that each for all i ∈ (1, n), the functions fi(a) are pairwise
different to each other.1 Let us observe the polynomial given by the factorization

z =
n∏

i=1

(x− fi(a)) .

We know that f creates a bijective mapping from {f1(a), . . . , fr(a)} onto itself. As
a consequence, the coefficients of z are fixed under H. It follows from this result that
z must be a separable polynomial in the field K(x), and must have the root a. Thus,
all elements a from E are separable over K, proving that the extension E/K is indeed
Galois.

It suffices to show that EH = K. We already know that K is a subfield of EH . To
proceed, AFSOC thatK 6= EH . Then, there exists some a ∈ EH/K with some minimal
polynomial with degree at least 2. Since a ∈ E is separable over K, there must exist
some b 6= a and some f ∈ H such that f(a) = b. However, this contradicts the fact
that Φ is fixed under H. Thus, EH = K, and Φ ◦Ψ = e. �

(ii) Suppose that H ≤ Gal(E/F ). Due to the fact that E/F is a finite extension, both
Gal(E/F ) and H are finite as well. Now, since E/K is finite and separable there exists
a primitive element a ∈ E. Then, by the argument provided from the first property, it
follows that

[E : EH ] = [EH(a) : EH ] ≤ |H|.
Since H fixes the elements in EH , it is then a subgroup of Gal(E/EH) = AutEH (E).
However, we are aware that

|Gal(E/K)| = [E : K] ≤ |H|,

which means that Gal(E/K) must be equal to H, implying in turn that Ψ ◦ Φ is also
equal to the identity function e. �

(iii) Suppose the extension K/F (or equivalently EH/F ) is normal. Then, consider the
following map:

α : Gal(E/F )→ Gal
(
EH/F

)
f 7→ f |EH

Note that this mapping is in fact a surjective group homomorphism with ker(α) = H.
Hence, it follows that H CGal(E/F ).

1Note that such a set of functions from H always exists, because the element a ∈ E is algebraic over K.
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Now let us begin by supposing that H is a normal subgroup of Gal(E/F ). In order
to prove that the extension K/F is normal, we must show that any homomorphism
f : EH → Ē 2 is mapped into EH . Since the extension E/F is normal, it follows that
f
(
EH
)
⊆ E. Then, let us take some y ∈ f

(
EH
)

such that f(x) = y. Now, let us take
some h ∈ H. Due to the fact that H C Gal(E/F ), there must exist some n ∈ H such
that hf = fn and h(y) = hf(x) = fn(x) = f(x) = y. Thus, we know that y ∈ EH ,
from which it follows that f

(
EH
)
⊆ EH .

�

Lemma 1.2. Let E/F be some field extension. Then, E/F is a Galois extension if and only
if it is a union of finite Galois extensions.

Proof. Suppose that the field E were a union of finite Galois extensions. Automatically, E is
the composite field of these extensions. Since normality and separability extend to composite
fields of already normal and separable fields, the extension E/F must also be Galois.

Now, suppose that the extension E/F were Galois. Then, let K be the intermediate field
of this extension. Then, the extension K/F is Galois as well. Then, it is possible to rewrite
the intermediate field K as F (θ) for some θ in E because of the separability of K/F . This
result is accomplished by using Artin’s theorem on primitive elements. Suppose that φ is the
minimal polynomial of θ over the field F ; it follows then that the splitting field of φ, which
is in fact a finite Galois extension over F , contains K. Due to the fact that every θ from
E is located within its respective intermediate field K, E is the union of each intermediate
field’s respective splitting field. Thus, the Galois extension E/F is a union of finite Galois
extensions. �

That we are able to describe large Galois extensions as a union of constituent Galois
extensions is essential. The previous lemma inspires the notion that with the correct set
of finite Galois extensions arranged in the appropriate order, one may be able to describe
infinite Galois extensions. In this spirit, we can construct the infinitely long tower of fields
E/ . . . /K3/K2/K1/F

3, in which each Ki is finite Galois over the previous field. In order
to describe Gal(E/F ), we will need to take some sort of limit, which will be accomplished
using the theory of inverse limits. Before we introduce these useful tools, however, we must
establish some important preliminaries.

2 A Categorical Approach to Inverse Limits

Definition 2.1. (Category) A Category C is a collection consisting of objects and mor-
phisms. The set of objects from C is denoted Ob(C ), while the set of morphisms is denoted
Ar(C ), which stands for arrows. For any Φ,Ψ ∈ Ob(C ), there must exist a set of morphisms
from Φ to Ψ denoted Mor(Φ,Ψ), for which the following properties are true:

2Here, Ē represents the algebraic closure of the field E.
3For a nicely illustrated diagram of the homomorphisms between Galois groups generated by this tower

of fields, refer to [4]
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(i) For any function z ∈ Ar(C ), there exist unique objects Φ and Ψ such that z ∈
Mor(Φ,Ψ).

(ii) There always exists the identity morphism, which returns the same morphism under
function composition.

(iii) Function composition is associative.

Definition 2.2. (Poset) A partially ordered set, or a poset for short, is some set A together
with some binary relation ≤ on A for which the following properties hold:

(i) For all a ∈ A, a is related to itself, or a ≤ a.

(ii) For three elements a, b, c ∈ A, the binary relation is transitive, or a ≤ b together with
b ≤ c implies a ≤ c.

(iii) If x ≤ y and y ≤ x, then x must be equal to y.

Posets are often represented with the notation 〈A,≤〉. This notation will be used for the
remainder of the paper.

Definition 2.3. (Directed Set) A directed set is a poset 〈X,≤〉 if for all x, y ∈ X, there
exists some z ∈ X such that x ≤ z and y ≤ z. In other words, there must exist some upper
bound in X for all pairs of elements in X.

Definition 2.4. (Inverse System) Let C be a category, and let 〈X,≤〉 be a directed set.
Then, let {Ax | x ∈ X} be a family of objects indexed by X, and let f j

i : Aj → Ai for i ≤ j
be a homomorphism such that f i

i = IdAi
, and f j

i ◦fk
j = fk

i for all i ≤ j ≤ k. Then, an inverse

system of C consists of objects from {Ax | x ∈ X} together with morphisms f j
i : Aj → Ai

such that i ≤ j. From now on, we shall discuss inverse systems using 〈X, {Ai}, {fji}〉, where
X is the directed set from which indices are drawn, Ai is the family of objects taking indices
from X, and fji are the aforementioned morphisms.

Definition 2.5. (Compatible Family) Let 〈Ai, fi, j〉 be an inverse system of the category
C which takes indices from X, and O ∈ Ob(C ). Then, the family of arrows of C given by
{gx : O −→ Ax|x ∈ X} is called a compatible family if the following maps are commutative
together:

(i) O
gj−→ Aj

(ii) Aj
fji−→ Ai

(iii) O
gi−→ Ai

Definition 2.6. (Inverse Limit)4 Let C be a category and 〈X, {Ai}, {fji}〉 be an inverse
system in C . Then, the object A ∈ Ob(C ) along with a compatible family of arrows of C

4This definition of inverse limits is one of many. For a deeper look at compatible families and a visual-
ization of the maps provided in this definition, see [3].
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given by {fx : A→ Ax} is said to be an inverse limit of this system if the following property
holds:

Let O ∈ Ob(C ). Then, whenever the family of arrows of C given by {hx : O → Ax} is
compatible, there must exist a unique arrow h in the category given by h : O → A that
makes the following maps commute together:

(i) O
h−→ A

(ii) A
fi−→ Ai

(iii) O
hi−→ Ai

Inverse limits are also called projective limits, and also admit the alternative definition
as a subgroup:

A = lim
←−

Ai =

{
ao ∈

∏
Ai

| fji (aj) = ai, ∀i ≤ j

}
Now that we have introduced the method of taking inverse limits, we are one step closer

to approximating an infinite Galois extension Gal(E/F ) using a union of finite Galois ex-
tensions. Before we accomplish this, however, we must first understand a few things about
topological groups.

3 A Foray into Topological Groups

It is necessary during the study of Galois Groups to define a topology over certain groups.
In the case of Galois Theory, topological groups are essential, for they provide a means of
examining infinite Galois extensions. In this section, we shall define the basic objects which
arise in the study of topological groups.5

Definition 3.1. (Topological Group) A group G is called a Topological Group if it is a
topological space and if G×G has the Product Topology. This topology is characterized by
the following group structure: both the multiplication map G×G→ G and the inverse map
given by G→ G : g 7→ g−1 must be continuous.

Definition 3.2. (Krull Topology) Suppose that E/F is a Galois extension. Then, for some
σ ∈ Gal(E/F ), we shall define the neighborhood basis of σ as the sets σGal(E/K), where
K/F runs through all finite Galois extensions of F in E. A topology is induced in the
process, which is called the Krull Topology.

5For a deeper look into the interplay between projective limits and topological groups, refer to [1].
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4 The Infinite Galois Correspondence

Having understood the preliminaries of inverse limits and the Krull topology, we will be
able to make use of the following useful result.

Theorem 4.1. Suppose that E/F were a Galois extension, and let Ki for i in a directed set
I be intermediate fields Ki ≤ E, which are finite Galois with respect to the field F. Now, let
us rename Gal(E/F ) to G, and Gal(Ki/F ) to Gi. Then, for all intermediate fields Ki ≤ Kj,
let us define the following morphisms:

f j
i : Gj → Gi

τ 7→ τ |Ki

Then, the Galois group Gal(E/F ) is isomorphic to lim←−Gi, together with the projec-
tions fi(τ) = τ |Ki

. 6

Lemma 4.2. Suppose that E/F were a Galois extension, and let H ≤ Gal(E/F ). Then
Gal

(
E/EH

)
= H̄.7

Proof. Let us begin by noting that H ≤ Gal
(
E/EH

)
, since, by definition, H fixes EH .

Now, suppose that (Ki) (for i in some directed set I) were the family of intermediate fields
of EH/F such that, for all i ∈ I, Ki/F were a finite Galois extension. Due to the fact that
Gal (E/Ki) is an open subgroup of Gal(E/F ), it is also closed. Noting this, we know that

Gal
(
E/EH

)
=
⋂
i∈I

Gal (E/Ki)

is closed as well. We must determine, however, why H is dense in Gal
(
E/EH

)
. First, let

us take some element p from Gal
(
E/EH

)
. As a consequence, all neighborhoods of p must

contain some pGal(E/Ki). Next, we shall show that there exists some q ∈ H
⋂
pGal(E/K)

equivalent to q|Ki
= p|Ki

. We begin by supposing that HKi
= {h|Ki

∈ Gal(Ki/F ) : h ∈ H}.
Now, by the fundamental finite Galois theorem, we know that HKi

= Gal
(
Ki/K

HKi
i

)
, from

which it follows that p|K ∈ HKi
. Thus, we have proven that q exists, and also that H is

dense in Gal
(
E/EH

)
, which proves the result. 8 �

Theorem 4.3. The Fundamental of Theorem of Infinite Galois Theory
Suppose that E/F were a Galois extension, and let us rename Gal(E/F ) to G. Now,

consider the maps given by

Φ : {H ≤ G : H = H̄} → {K : F ≤ K ≤ E}
H 7→ EH

6The proof of this theorem goes beyond the scope of this paper.
7The bar atop the field H represents the closure of the field H in the Krull topology on Gal(E/F ).
8This proof relies heavily on the one provided in [2].
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and
Ψ : {K : F ≤ K ≤ E}→{H ≤ G : H = H̄}

K 7→ Gal(E/K)

Then, Φ and Ψ are both bijective and inverse to each other, and if H is open, then EH/F
is finite, and H is also closed.

Proof. That Φ and Ψ are bijective and inverse to each other follows directly from Lemma
4.2 together with Fundamental Theorem of Finite Galois Theory. We shall begin proving
the second statement by first supposing that H were a clopen9 subgroup of G, since all open
subgroups of topological groups are also closed. Let us note that an open neighborhood of
the identity exists within H. This implies that there exists a field K for which Gal(E/K)
is a subgroup of H, and the extension K/F is finite. Thus, EH ⊂ K, from which it follows
that the field extension EH/F is indeed finite. If we begin instead by supposing that EH/F
is finite and H is closed, then we know that H has finite index in G, meaning that it is open,
thus completing the proof. �
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