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Abstract. In this paper we introduce the class group, an important structure that mea-
sures to what extent the ring of integers in an algebraic field has unique factorization. The
paper assumes moderate knowledge of abstract algebra, and a good understanding of al-
gebraic number theory would be beneficial. There are two sections in this paper: the first
introduces the class group, while the latter provides several examples of computing the class
group using the Minkowski bound. This paper is dedicated to Simon Rubinstein-Salzedo
and members of the Euler Circle; without them this paper would not have been possible.

1. The Class Group

Before jumping into class group theory, we must first define several important structures.
Recall that a group is a set closed by an associative operation which has an identity and
inverses. We introduce the idea of a semigroup as follows:

Definition 1.1. A semigroup is a set that is closed under an associative operation.

Semigroups allow for the inclusion of sets such as the empty set or the integers under
multiplication; however, the latter is better referred to as a monoid, a semigroup with an
identity.

Now recall that a field F is a set closed by two operations addition and multiplication
such that F is an abelian group under addition and F\{0F} is an abelian group under
multiplication, along with distributivity of multiplication over addition. We now introduce
the ring, a generalized version of a field.

Definition 1.2. A ring R is a set closed under addition and multiplication such that R is an
abelian group under addition and a semigroup under multiplication, with the added caveat
that multiplication distributes over addition.

Examples of rings include the integers, the integers modulo n, and the set of all n by
n matrices. The first two are examples of commutative rings, or rings that commute over
multiplication. In fact, the integers forms an integral domain, a ring that stipulates that the
product of nonzero elements must be nonzero. Because rings form groups under addition,
we can consider their subgroups. One special kind of subgroup is known as an ideal.

Definition 1.3. For some commutative ring R, an ideal I is an additive subgroup of R such
that rI ⊆ I ∀r ∈ R. The norm of I is defined as [R : I].

Ideals appear for rings that do not commute under multiplication as well, but are catego-
rized as left or right ideals depending on whether rI or Ir is a subset of I, respectively.

Ideals are commonly expressed using their generators. Specifically, the ideal generated by
g1, . . . , gn is

(g1, . . . , gn) = {a1g1 + · · ·+ angn | a1, . . . , an ∈ R}.
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We call (1R) = R the unit ideal, and (0R) = {0R} the zero ideal. Lastly, a principal ideal is
an ideal generated by one element.

Since ideals are groups under addition, it makes sense to figure out how to multiply two
ideals a and b together. An immediate thought is to use ab = {ab | a ∈ a, b ∈ b}, but it
turns out that this product is not necessarily closed under addition. Thus, we must include
all finite sums of these products as well.

Once we have the product of ideals, we can consider which ideals are divisible by another.
Suppose a, b are ideals where a|b; that is, there exists c such that b = ac. But since
ca ∈ a ∀c ∈ c we have ac ⊆ a. Thus if a|b then a contains b. In fact, we have the following:

Proposition 1.4. Let R be a commutative ring and a, b ∈ R. Then a|b iff (a) | (b).

Proof. Suppose a|b, so b = ac for c ∈ R. Then (b) = (ac) = (a)(c) implies one direction. If
(a) | (b), then there exists an ideal c such that (b) = (a)c. But we have

(b) = (a)c = ac = {ac | c ∈ c},

so there must be some c such that b = ac. �

These notions of containment give rise to the idea of a prime ideal.

Definition 1.5. An ideal I is prime iff for ideals a, b, whenever ab ⊆ I, we have a ⊆ I or
b ⊆ I.

We can see that the notion of prime numbers follows from this definition. If (n) is prime
for some integer n, then there exists no nontrivial ideal (a) that divides it, implying a - d.

Definition 1.6. An algebraic field is a finite-dimensional field extension of Q.

This means that the extension has finite dimension when considered as a vector space over
Q, or that the degree is finite. In other words, all algebraic fields can be represented as Q(α)

for some primitive element α. Examples of algebraic fields include Q(
√
d) for square-free d

and Q(ζn). Next, we show how to obtain an algebraic field from an integral domain through
its field of fractions.

Definition 1.7. The field of fractions of an integral domain K is the field obtained by
adding all elements of the form a

b
, where a, b are nonzero elements of K.

In other words, the field of fractions of K adds the ability to divide by nonzero elements,
and thus is the smallest field containing K. We can also “convert” an algebraic field into an
integral domain through the ring of integers.

Definition 1.8. The ring of integers of an algebraic field K is a subset of K containing all
elements are roots of some monic polynomial with integral coefficients. It is an example of
a Dedekind domain and is denoted as OK .

One can check readily that the ring of integers is an integral domain and also a superset
of Z, the ring of integers of Q. For other algebraic fields, however, “integers” include other
numbers as well.

Proposition 1.9. The ring of integers of Q(
√
d) for a square-free integer d is Z(1+

√
d

2
) if

d ≡ 1 (mod 4) and Z(
√
d) if d ≡ 2, 3 (mod 4).
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Proof. Let K = Q(
√
d) and a+b

√
d

2
∈ OK for a, b ∈ Q. We proceed to take the minimum

polynomial, which turns out to be

x2 − ax+
a2 − b2d

4
.

This implies that a ∈ Z and a2 − b2d ≡ 0 (mod 4). We can now go through each individual
case: d ≡ 1 (mod 4) implies a, b have the same parity, while d ≡ 2, 3 (mod 4) forces a, b to
be even (the latter following from squares being 0, 1 modulo 4). �

We have defined multiplication (and hence closure) for ideals, so forming a group of ideals
is the logical next step. This is certainly possible, though we must first define another
mathematical object called a module.

Definition 1.10. For a ring R, a R−module M is an additive abelian group composed with
an operation · that sends R×M →M such that for all r, s ∈ R and m,n ∈M , we have

(1) r · (m+ n) = r ·m+ r · n
(2) m · (r + s) = m · r +m · s
(3) (rs) ·m = r · (s ·m)
(4) 1R ·m = m.

Definition 1.11. A R−submodule N of M is a subgroup of M such that ∀n ∈ N, r ∈ R,
we have n · r ∈ N .

A module is essentially a generalization of a vector space, but coefficients come from rings
instead of fields. If a module has a basis (generating set), then it is called a free module.
The size of the basis is called the rank of the module. One example of a module is Z (over
itself), with its ideals as its submodules: nZ. With this, we can define the fractional ideal
in relation to the ring of integers:

Definition 1.12. Let K be an algebraic field. A fractional ideal J ⊂ K is a OK-submodule
such that there exists nonzero r ∈ OK with rJ ⊂ OK .

For example, fractional ideals in Q are Z-submodules of the form q Z for some q ∈ Q.
Note that if we have rJ ⊂ OK , we have arJ ⊂ OK for any a ∈ OK . Since all multiples of
r work, we can use NK/Q(r). Thus J is a fractional ideal if there exists nonzero r ∈ Z such
that rJ ⊂ OK .

Furthermore, a fractional ideal can be expressed in the form ka, where k ∈ K× and a
an ideal of OK . To see this, note that rJ is an OK module in OK , so rJ is an ideal and
1
r
(rJ) = J . If a = OK , then we call J principal. When all fractional ideals are principal, we

call the integral domain a principal ideal domain, or PID for short.

Proposition 1.13. Every fractional ideal in K is a free Z-module of rank [K : Q].

See [Conb] for a proof.

Definition 1.14. Two fractional ideals I, J ⊂ K are said to be equivalent if there exists
nonzero a ∈ K such that I = aJ .

Equivalence classes of fractional ideals are called ideal classes, and they form a group
under multiplication here (thought not always for other integral domains). This group is
called the class group.
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Definition 1.15. The class group of an algebraic field K, denoted as Cl(K), is the abelian
group formed by the set of all equivalence classes of the fractional ideals of OK .

The identity of the class group is the class of all principal ideals, and I−1 is defined as the
fractional ideal such that II−1 is principal. The order of the group is called the class number
of a field.

The class group measures to what extent unique factorization fails in the ring of integers
of a field. If the class group is trivial, then all fractional ideals are principal, and thus K is
a PID.

2. Minkowski Bound

While we have defined the class group for a field, it remains difficult to compute this group
and its order. In this section we will discuss one popular way to do this using the Minkowski
bound.

Definition 2.1. An embedding of an algebraic field K is an injective ring homomorphism
σ : K → C. Such a map is real if its image lies in R, and complex otherwise.

Let x be a primitive element of K, and f be the minimum polynomial of x over Q. Whether
an embedding is real of complex is whether the root of f that x is mapped to lies in R or not.
Furthermore, if we consider f over R, then f splits into factors of degree 1 or 2. Since there
are no repeated factors, any factor of degree 1 will give a real root, and any factor of degree
2 will give two complex conjugate roots. Thus, if K has r1 real and r2 complex embeddings,
then we have r1 + 2r2 = [K : Q]. Now we introduce a few key terms in linear algebra:

Definition 2.2. Let K be an algebraic field and x ∈ K. Viewing K as a finite-dimensional
vector space in Q, we construct an endomorphism φx : K → K defined on multiplication by
x. We define the trace and norm of x as TrK(x) = Tr(φx) and NK(x) = det(φx) respectively.

Definition 2.3. For an algebraic field K, let α1, α2, . . . , αn be the basis of OK , and let
σ1, σ2, . . . , σn be the K-embeddings. The discriminant of K is given by Disc(K) = det(M)2,
where M is the matrix given by M = {mij | mij = σi(αj)}.

This definition can also be extended to the discriminant of an ideal, using its basis and
embeddings. We state Minkowki’s Theorem, which bounds the norm of prime ideals in
Cl(K).

Theorem 2.4 (Minkowski). Let r1, r2 be the number of real and complex embeddings, re-
spectively, in the algebraic field K of degree n. In any ideal class C ∈ Cl(K), there exists
ideal I ∈ C such that

N(I) ≤ n!

nn

(
4

π

)r2√
|Disc(K)|.

This is derived from Minkowski’s result that every convex set in Rn symmetric with respect
to the origin with volume greater than 2n contains a nonzero lattice point. For further
explanation, see [Ull08]. Minkowski’s Theorem is very useful in determining whether the
ring of integers of an algebraic field is a PID. However, it is quite tricky to compute the
discriminant of a general algebraic field, so in this paper we will focus on the fields Q(

√
d)

for square-free d.
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Proposition 2.5. In the algebraic field Q(
√
d), we have

Disc(K) =

{
d d ≡ 1 (mod 4)

4d d ≡ 2, 3 (mod 4).

Proof. First suppose that d ≡ 1 (mod 4), so OK has basis [1, 1+
√
d

2
]. Then the discriminant

is

Disc(K) =

[
det

(
1 1+

√
d

2

1 1−
√
d

2

)]2
= d.

If d ≡ 2, 3 (mod 4), then OK has basis [1,
√
d], and the discriminant is

Disc(K) =

[
det

(
1
√
d

1 −
√
d

)]2
= 4d.

�

Note that if d > 0 then K has two real and zero complex embeddings, so upon using
Minkowski’s Theorem, any algebraic field with |Disc(K)| < 16 contains an ideal of norm
one in every ideal class, so K has trivial class group. If d < 0, then K has zero real and
two complex embeddings, so any algebraic field with |Disc(K)| < π2 has trivial class group.
These include the algebraic fields

Q(
√

2),Q(
√

3),Q(
√

5),Q(
√

13),Q(i),Q(
√
−2),Q(

√
−3),Q(

√
−7).

Now we tackle a slightly harder problem:

Theorem 2.6. Q(
√

17) has trivial class group.

Proof. From Minkowski’s Theorem, we know there must exist an ideal in every ideal class
with norm 1 or 2. Suppose we have an ideal class with an ideal of norm 2. Though we
quickly see that (2) has norm two, it is not a prime ideal: we have

(2) =

(
3 +
√

17

2

)(
3−
√

17

2

)
.

These two factors are the only prime ideals of norm 2, and since they are principal, the ideal
class must contain only principal ideals. This implies that OK is a PID, and so the class
group is trivial. �

And lastly, we investigate a case where the class group is nontrivial.

Theorem 2.7. The class group of Q(
√
−14) is isomorphic to Z /4Z.

Proof. Let K = Q(
√
−14), so we still have [K : Q] = 2 and 2 complex embeddings. Note

that Disc(K) = −56, so applying Minkowki’s Theorem we get a bound of N(I) ≤ 4. Now
we look at how the minimum polynomial X2 + 14 factors in the primes 2 and 3.

Solving the modular equations, we have

X2 + 14 ≡ X2 (mod 2)

X2 + 14 ≡ (X + 1)(X − 1) (mod 3),

so there must exist prime ideals p2, p3, p
′
3 with norms 2, 3, 3 respectively such that p22 = p3p

′
3 =

(1). Since p′3 = p−13 , Cl(K) is generated by p2, p3. Now consider the integer 2+
√
−14, which



6 XU

has norm 18 = 2 · 32. Because 3 - 2 +
√
−14, only one of p3, p

′
3 divides (2 +

√
−14); WLOG

let it be p3. We have
(2 +

√
−14) = p2p

2
3 =⇒ p2 = p−23 .

Thus Cl(K) is generated by p3. Now we show that p3 is nonprincipal. If p3 is principal,
there exists a, b ∈ Z such that

N(p3) = N(a+ b
√
−14) =⇒ a2 + 14b2 = 3.

But this is clearly impossible, so p3 is nonprincipal and thus has order 4. Because p3 generates
the class group, we have Cl(K) ∼= Z /4Z as desired. �

Finding the class group of an arbitrary quadratic extension is extremely difficult. The
class number problem, posed by Gauss in 1801, asks for a given n a list of all imaginary
quadratic fields of class number n. Though this has been partially resolved, with Watkins
finding specifications for quadratic fields of class number up to 100 (see [Wat04]), there is
still much to explore about this interesting group.
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