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Abstract

In this paper we will discuss the essence of ring theory and rings, the third major algebraic
structure in abstract algebra other than groups and fields. In this paper we will go into
depth while studying the topics of rings, homomorphism between rings, a special type of
subring called an ideal and quotient rings. Building off of these main topics we will go on to
discuss the relationship between all of these concepts and then we’ll talk about some major
theorems connecting all of these ideas called the three ring isomorphism theorem: the first ring
isomorphism theorem, the second ring isomorphism theorem and the third ring isomorphism
theorem.

1. Preliminary Definitions

First, we’ll start with the definitions of a ring which can be extended from the definition of
a group.

Definition 1.1. A ring R is a set of numbers equipped with two binary operations (+, ·) and
sometimes denoted as (R,+, ·) has the following properties:

• The operations + is commutative
• The operations + and · are associative
• Multiplication distributes over addition
• There exists an additive identity element
• There exists a multiplicative identity element
• The multiplicative and additive
• There exists an additive inverse element in the ring for every element in the ring,

meaning that ∀r ∈ R we get that there exists an element −r such that r + (−r) = 0.

As you notice this does not require R to have commutativity of multiplication. We now
define a ring in which multiplication is commutative.

Definition 1.2. A ring R is called a commutative ring if the operation of multiplication,
denoted ·, is a commutative operation.

Let’s now look at a few examples of rings.

Example. The integers, Z is a ring under addition and multiplication.

Example. The integers modulo n where n ∈ N forms a ring.

Example. The rational numbers, Q forms also forms a ring under addition and multiplication

Example. We also have the real numbers R

Example. And of course we have the complex numbers, C also form a ring.

Example. All polynomials with integral coefficients form a ring. This ring is denoted Z[x]
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Example. The Gaussian Integers, denoted Z[i] forms a ring. This is the set of the form
Z[i] = {a + bi : a, b ∈ Z}

From now on, all the rings which we will deal with will be commutative rings so when ring
is written assume that it is commutative.

Now, we know that we can add, subtract and multiply elements in a ring but the real
question is whether or not we can divide. We know that in fields, we have the property that
every element has an inverse which means we can divide, but inverses are not an axiom for
rings. Some elements in rings do have inverses but not all, otherwise it would be a field. We’ll
now define the types of elements of rings that have an inverse.

Definition 1.3. An element of a ring R, r ∈ R is referred to as a unit if there exists an element
r′ such that rr′ = 1 where 1 is the multiplicative identity (and 1 will be the multiplicative
identity from now on in this paper). From now on we will also call this element r′ to be r−1

Now I’ll move on to a few basic propositions that are important to discuss when analyzing
rings. For these following propositions, R will denote a commutative ring and r will be a place
holder for every element of R.

Proposition 1.4. ∀r ∈ R, 0 · r = r · 0 = 0

Proof. We see that r · 0 = r · (0 + 0) = r · 0 + r · 0 so thus r · 0 = r · 0 + r · 0 and then
r · 0 + (−r · 0) = r · 0 + (r · 0 + (−r · 0)) and thus 0 = r · 0 and by commutativity of a ring we
get that r · 0 = 0 · r = 0 for all r ∈ R. �

Proposition 1.5. The element 1 (multiplicative identity) is unique. This means that given
an element 1 such that ∀r ∈ R we get that 1 · r = r · 1 = r and 1′ such that the same property
holds, it must follow that 1 = 1′.

Proof. We know that 1 · 1′ = 1′ and because we know that 1′ is also the identity we get that
1 · 1′ = 1 so we get that 1 · 1′ = 1 = 1′ hence proving that the multiplicative identity is
unique. �

Proposition 1.6. Just like in fields, ∀r1, r2 ∈ R we have that −(r1 ·r2) = (−r1)·r2 = r1 ·(−r2)

Proof. We know that r1 + (−r1) = 0 so applying the rule of distributivity we have that
r2(r1 + (−r1)) = r2 · 0 which equals 0 by proposition 1.4. This means that r1r2 + (−r1)r2 = 0
so thus by adding −(r1r2) to both sides we get that (−r1)r2 = −(r1r2). We can apply a
similar argument to get r2 + (−r2) = 0 and then by distributivity and prop 1.4 we get that
r1(r2 + (−r2)) = 0 and thus r1r2 + r1(−r2) = 0 so by adding −(r1r2) to both sides we’ll get
that r1(−r2) = −(r1r2) so we end up getting that r1(−r2) = (−r1)r2 = −(r1r2). �

Proposition 1.7. (−1) · (−1) = 1

Proof. We know that 1 + (−1) = 0 and thus (1 + (−1))(1 + (−1)) = 0 so we get that
1 ·1+1 ·(−1)+1 ·(−1)+(−1) ·(−1) = 0. Then we get that (1+(−1))+(−1)+(−1) ·(−1) = 0
and then we get that 0 + (−1) + (−1) · (−1) = 0 and then 1 = (−1) · (−1) by adding 1 to both
sides. �

Proposition 1.8. The element 0 (additive identity) is unique

Proof. Assume for the sake of contradiction that there exists two additive identities called 0
and 0′ so we get that 0 + 0′ = 0′ but we also get that 0 + 0′ = 0 so then we’d get that 0 = 0′

proving that the additive identity is unique. �
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Proposition 1.9. Additive inverses are unique.

Proof. Assume for the sake of contradiction that given r ∈ R we have multiple additive
inverses, say −r and (−r)′. This means that r + (−r) = r + (−r)′ = 0. Now, adding −r to
both sides we get that r + (−r) + (−r) = −r = −r + r + (−r)′ = −r so thus we get that
−r = (−r)′. �

Proposition 1.10. For any r ∈ R we get that (−1) · r = −r

Proof. We know that r · 0 = 0 so we get that r(1 + (−1)) = 0 and thus r + (−1) · r = 0 and
thus because additive inverses are unique we get that (−1) · r = −r. �

Now, we understand the basic properties of rings and how they work. Hence, we can move
on to looking at subrings and more advanced applications and properties of rings.

2. Subrings

In this section we will define the notion of a subring which is a ring that is a subset of
another ring.

Definition 2.1. A subring S ⊆ R of a ring R is a subset of R which is a ring under the same
operations as R.

We can expand this definition to the subring test which tests if a given subset of a ring is
actually a subring.

Proposition 2.2. A nonempty subset S ⊆ R is a subring if given a, b ∈ S we get that a−b ∈ S
and a · b ∈ S

Now, let’s prove this using the ring axioms.

Proof. �

Let’s now look at a few examples of subrings of a given ring R and then analyze their
properties.

Example. The even integers (all multiples of 2), denoted 2Z forms a subring of the integers,
Z.

Example. The set of all multiples of n, nZ forms a subring of Z just like how 2Z is a subring
of Z.

Example. The set Z[i] forms a subring of Q[i]

Example. We get that the set Z[1
2
] is a subring of Q

Example. That last example follows from the fact that Z also forms a subring of Q

Example. We get that Q is a subring of R.

Example. We then get that R is a subring of C.

Example. It follows from the past three examples using the transitive property that Z is a
subring of C as well.

Proposition 2.3. If A and B are two subrings of R then it is true that A ⊕ B is a subring
of R as well where A⊕B = {a + b : a ∈ A, b ∈ B}
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Proposition 2.4. The intersect of two subrings of a ring form another subring. Another way
to frame this is given subrings of R, S1 and S2 we have that S1 ∩ S2 is a subring of R.

Remark 2.5. Is it true that given a ring and two subrings that it follows that the union of
those two subrings is also a subring?

3. Ideals

In this chapter, we’ll define the notion of an ideal, a special type of subring.

Definition 3.1. A left ideal is any subring I of a ring R such that for every r ∈ R and a ∈ I
we have that r · a ∈ I and also for any a, b ∈ I we have that a− b ∈ I and also 0 ∈ I.

A right ideal is defined the same way but because we are using commutative rings in this
paper we won’t really need that notion. All of our ideals are what are usually referred to as
two-sided ideals.

Now, we’ll define the notion of a principal idea.

Proposition 3.2. Given an element r ∈ R we say that all of the multiples of r form an ideal
which is denoted 〈r〉 or (r) and is the called principal ideal generated by r or just the ideal
generated by r.

Proof. Any element in 〈r〉 takes the form ar where a ∈ R. We know from our definition
of ideals that this set satisfies the properties of closure under multiplication purely by the
definition of how the set is defined. We can also see that if we take two elements in 〈r〉
that the difference takes the form ar− br and can be factored by distributivity into the form
r(a − b) which by definition of 〈r〉 is going to be in 〈r〉 which gives us full proof that 〈r〉 or
the principal ideal generated by r is indeed an ideal. �

Definition 3.3. In a ring in which every ideal is principal, we call that ring a principal ideal
ring or a principal ideal domain.

Now let’s look at an interesting proposition about how ideals work.

Proposition 3.4. If the identity 1 ∈ I where I is an ideal then I = R

Proof. Once thinking about this this seems pretty easy to prove. If 1 ∈ I then for every r ∈ R
we get that r · 1 ∈ I which means that r ∈ I which thus means that R = I because every
element of R ∈ I and it is impossible for I to contain R as by definition, I is a subring of
R. �

4. Quotient Rings

If we look at what I is in R and just take those to sets under addition, we get the analogue
of how a normal subgroup works with respect to a group.

So if we take r ∈ R and our ideal I we can look at the set r + I = {r + i : r ∈ R, i ∈ I}
This means that r1 ≡ r2 mod I if and only if r1 − r2 ∈ I. Let’s try and prove this more

formally.

Proposition 4.1. Let R be a ring and I be an ideal of R. Let r1 + I and r2 + I denote two
cosets of I and we have that r1 + I = r2 + I if and only if r1 − r2 ∈ I and we also get that if
r1 + I 6= r2 + I then r1 + I ∩ r2 + I = {} or in other words, they are disjoint.
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Proof. First we prove that if r1+I = r2+I then r1 ' r2 mod I or r1−r2 ∈ I. If r1+I = r2+I
then there exist elements i1, i2 ∈ I such that r1 + i1 = r2 + i2 and because i1, i2 ∈ I we know
that i2 − i1 ∈ I so r1 − r2 = i2 − i1 so we get that r1 − r2 ∈ I and thus r1 ' r2 mod I.
Going the other direction we get that if r1 ' r2 mod I we get that r1 − r2 ∈ I which means
that r1 − r2 = i which proves that r1 = i + r2 or r1 ∈ r2 + I and a similar operation in the
other direction shows that r2 ∈ r1 + I proving that r1 + I = r2 + I through some more simple
manipulation.

Next to prove the other part we will assume that r1 + I and r2 + I are neither equal nor
disjoint, so say a ∈ r1 + I and a ∈ r2 + I. Because a ∈ r1 + I we have that a = r1 + i1 where
i1 ∈ I and a = r2 + i2 where i2 ∈ I which means that r1 + i1 = r2 + i2 which means that
r1− r2 = i2− i1 so we get that r1 ' r2 mod I which proves that r1 + I = r2 + I proving that
they is either disjoint or equal. �

Now, we know from group theory that R/I denotes the set of cosets {r + I : r ∈ R} where
our operation is defined by I + r1 + I + r2 = I + (r1 + r2) which gives us a ring structure on
R/I.

Theorem 4.2. If I is an ideal of (R,+, ·) under the operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I)(r2 + I) = r1r2 + I

and R/I forms a ring under these operations and we call this ring a quotient ring. Some
mathematicians refer to this as a factor ring.

Proof. Let’s go through the ring axioms and see if this meets the structural requirements of a
ring. But before we do that we have to show that the operations of addition and multiplication
are well defined. Addition is a relatively easy proof. For this we assume that r1 + I = r′1 + I
and r2 + I = r′2 + I where these are our four cosets (two unique) we get that r1 + r2 + I =
r′1 + r′2 + I. This means that r1 − r′1 = i1 ∈ I and r2 − r′2 = i2 ∈ I which means that
r1 + r2 − (r′1 + r′2) = i1 − i2 ∈ I proving that (r1 + r2) − (r′1 + r′2) ' 0 mod I by our other
proposition this proves that r1 + r2 + I = r′1 + r′2 + I.

Now, proving that multiplication is well defined we get that r1 + I = r′1 + I and r2 + I =
r′2 + I proving that r1 − r′1 = i1 ∈ I and r2 − r′2 = i2 ∈ I. Multiplying r′1r

′
2 we get that

r′1r
′
2 = (i1+r1)(i2+r2) = i1i2+r1i2+r2i1+r1r2 which gives us r′1r

′
2−r1r2 = i1i2+r1i2+r2i1 ∈ I

and thus r′1r
′
2 + I = r1r2 + I proving that multiplication of cosets is well defined.

Now that this is proved it is relatively easy to look through the ring axioms and just simplify
our results with respect to the ideals proving that the set R/I has the structure of a ring. �

Example. An ideal of Z6 is the ideal generated by 2, 〈2〉 and taking Z6/〈2〉 which becomes
{〈2〉, 1 + 〈2〉} which equals {{0, 2, 4}, {1, 3, 5}}.

Example. Another example of a quotient ring is Z/〈n〉 where n ∈ Z and 〈n〉 is the ideal
generated by n. This becomes the set {〈n〉, 1 + 〈n〉, · · ·n− 1 + 〈n〉} and n+ 〈n〉 = 0 + 〈n〉 = n
showing us that Z/〈n〉 ' Zn

5. Ring homomorphisms and Isomorphism theorems

Just like how we have an idea of homomorphisms between groups, we can create a similar
operation between rings.
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Definition 5.1. Given two rings (R,+, ·) and (S,⊕,⊗) then a ring homomorphism f : R→ S
has the following properties given a, b ∈ R:

• f(a + b) = f(a)(b)
• f(a · b) = f(a)⊗ f(b)
• f(1R) = 1S where 1R and 1S are the respective identities for each ring

A ring isomorphism is an isomorphism between rings where the homomorphism is a bijec-
tion.

Proposition 5.2. ∀r ∈ R we have that f(−r) = −f(r)

Proposition 5.3. Given 0R ∈ R we get that f(0R) = 0S

Now, let’s define the ideas of kernels and images of a morphism.

Definition 5.4. Given a ring homomorphism f : R → S we get that the kernel of f is
Kerf = {r : f(r) = 1S}.

Proposition 5.5. Kerf is a subring of R

Proposition 5.6. Kerf is an ideal of R

Definition 5.7. The image of a ring homomorphism f : R → S is defined by imf = {s :
f(r) = s∀r ∈ R}, so every element that is in the set of outputs of the morphism.

Proposition 5.8. We have that imf is a subring of S

Now we’ll look at the three most important theorems of ring theory.
The first theorem is called the first ring isomorphism theorem.

Theorem 5.9. If f : R→ S is a ring homomorphism we get that R/Kerf ' Imf

This next theorem is called the second ring isomorphism theorem.

Theorem 5.10. If I and J are ideals of a ring R then I/(I ∩ J) ' (I + J)/J

The final theorem I will show you is the third isomorphism theorem.

Theorem 5.11. Let I and J be two ideals of the ring R where J ⊆ I then I/J is an ideal of
R/J and most importantly (R/J)/(I/J) ' R/I.
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