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Presentations of Groups

Groups often have complex definitions that may be difficult to work with, mathematically. Consider, for
instance, the dihedral group Dn, defined as the group of all symmetries of a regular n-gon under a group
operation of composition. Even simple operations on Dn can be difficult to compute because of the geometric
definition of the group. For instance, given an n-gon with a vertex on the positive x-axis, what is the
transformation given by a rotation counterclockwise by 10π

n radians, followed by a reflection across y =
tan( 2π

n ), a rotation of 6π
n radians, and then a reflection across y = 0?

In attempting to calculate the result of such a transformation using geometric means, one runs into
difficulties, especially when an n-gon cannot be accurately drawn. Even if an accurate answer or picture can
be formed, a geometric sketch is not a substitute for a proof, and ultimately we must resort to coordinate
geometry in order to answer this question geometrically.

Perhaps a better question, however, is what are the rules that allow us to combine these various opera-
tions? Here we see two different types of operations being applied: rotation and reflection.

Let us begin by considering rotations in the dihedral group. How do rotations relate? A rotation by α
radians followed by a rotation by β radians will ultimately result in a rotation by α + β radians; in other
words, rotations combine additively. However, the n-gon cannot be rotated at any arbitrary angle for the
dihedral group. We must rotate the n-gon onto itself, meaning that only angles of multiple of 2π

n are allowed.
In this sense, we can represent any rotation as a composition of several of these elementary rotations. Thus,
let r ∈ Dn be the element corresponding to a rotation of 2π

n radians. We can represent the first step above
as r5 and the second step as r3. Note also that composing r onto itself n times gives us a rotation by 2π
radians, the identity transformation, so rn = e.

Now let us consider reflections. How do reflections relate to each other? The reflections don’t combine
nicely, so perhaps we should instead think about connecting different types of reflections much in the same
way that we did the rotations. Notice that a reflection over y = tan( 2π

n ) is like rotating the n-gon clockwise
2π
n radians, then reflecting over y = 0, and then rotation back counterclockwise by 2π

n radians. This way, we
can rephrase any kind of reflection as a composition of rotations and a reflection over y = 0. Like r, we can
let this element of Dn be s.

So, the transformation above reduces to: (r5)(r−1sr)(r3)(s). Since these are elements of Dn, they are
associative, so we can simplify this to r4sr4s. Now, however, we need to know how the elementary rotation
and reflection relate to one another. So consider rs. This is equivalent to a rotation counterclockwise by 2π

n
radians followed by a reflection across the y = 0. This reminds us of the way that we reflect over the line
y = tan( 2π

n ), which is by r−1sr. Notice that this reflection is the same as reflecting over y = 0 followed by a
rotation by 4π

n counterclockwise. So, we have r−1sr = sr2 or r−1s = sr. We can also rearrange this to show
rsr = s or rs = sr−1. We can use this to simplify the above expression to get the identity transformation.

This method of expressing the dihedral group is called a presentation of a group.

Definition 1. A presentation of a group G is a set S that generates G along with a set of equations, called
relations, that the elements of S satisfy. The elements of S are sometimes also called generators.

For instance, we can present the dihedral group using r and s. Notice that every isometry of a regular
n-gon onto itself can either be a rotation or a reflection, as no translation is possible, and these are the only
types of isometries. In addition, r and s generates every possible rotation and reflection, so r and s generate
Dn. We might write this as:

Dn = 〈r, s〉.
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However, notice that the important identities that we use to simplify expressions in Dn are the relations.
For this reason, and others following, we write a presentation as follows:

Dn = 〈r, s | rn = e, s2 = e, rs = sr−1〉.

Note, though, that r and s are not unique in satisfying these relations. Any rotation in Dn, when
composed n times onto itself, gives the identity, as does any reflection on itself twice. We can represent any
rotation as ri and any reflection as r−jsrj so rir−jsrj = r−jrisrj = r−jsr−irj = r−jsrjr−i by the third
relation above. Thus, any reflection and rotation will satisfy these relations. But is that enough to present
Dn? We shall soon see that it is.

Free Groups and Presentations

In order to formalize the notion of generators and relations, we must have some way to deal not just with the
elements of a group, but with the products of generators that equal elements of the group. This is the idea
behind the free group — to represent products of the elements of a set under any arbitrary group operation.
If the generator set is S, then the free group on S is denoted by F (S). An element of a free group is called
a word. Some example elements of the free group F ({a, b}) are a2b, aba−1 or ababa.

To formalize this notion of a free group, we need to do three things: first, construct the group itself,
second, ensure the group is well-defined, and third, define a group operation. The purpose of a free group
is to contain the possible products of a set of generators in a group, so we know we require a set of inverses.
Let this be S−1 and let S and S−1 have a bijection between them of inverse. That is, every s ∈ S has an
inverse, denoted by s−1 ∈ S−1 and conversely, (s−1)−1 = s. For simplicity, we will omit an identity element.
Now, from these elements, we can construct words:

Definition 2. A word in a free group F (S) of a set S is a finite sequence of elements of either S or S−1. In
other words:

w = (s1, s2, . . . , sn)

where si ∈ S ∪ S−1 for every integer 0 < i ≤ n. As a shorthand, we may say that w = s1s2 · · · sn.

Now, to ensure that the group is well-defined, first we must determine what equality is in the free group.
Elements of the free group are similar to products in a group, so equality, like in a group, would mean that
the result of the products should be equal. However, we cannot evaluate a word as we can in a group. But
we can do something similar: we can simplify.

We will consider a word w = (s1, s2, . . . , sn) reduced if, for every integer 0 < i < n, si 6= s−1i+1. If S is

a subset of a group, then a word under the group operation with si = s−1i+1 would simplify as sis
−1
i+1 = e.

Thus, we can consider all reduced words to be distinct, and the free group the set of all reduced words.
There is one final formalization of the free group, and that is the group operation. The group operation

will clearly be concatenation of words, but we must prove that the concatenation of two elements of the free
group will be another element of the free group. That is, the product of two reduced words will be a reduced
word.

Consider words w = s1s2 · · · sn and v = r1r2 · · · rm. Let i be the largest positive integer such that, for
every integer 0 ≤ j < i, sn−j = r−1j+1 (if sn 6= r−11 then let i = 0). Then define the product

wv = s1s2 · · · sn−iri+1ri+2 · · · rm.

Notice that sn−i 6= r−1i because of the maximality of i, and since w and v are reduced, at all other points,
consecutive terms are not inverses. So wv as defined above is a reduced word.

Now all we require is to determine that the free group is indeed a group.

Proposition 1. If S is a set, then the free group on S, F (S) is a group.

Proof. The identity of F (S) is called the empty word, which is the empty list () and denoted e. Every
w = s1s2 · · · sn has an inverse s−1n s−1n−1 · · · s

−1
1 (notice that this is the same inverse as a product under a

group).
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Proving associativity is more difficult. We will rely on the fact that function composition is associative,
meaning that the symmetric group on the free group is in fact a group. Let σw : F (S) → F (S) be a
permutation of F (S) such that σw(v) = wv for all v ∈ F (S). This is a permutation since there exists an
inverse σw−1 where (σw ◦ σw−1)(v) = ww−1v = v and (σw−1 ◦ σw)(v) = w−1wv = v meaning that σw is a
bijection. Now, let A = {σw |w ∈ F (S)}. We can construct a bijection φ : F (S)→ A such that φ(w) = σw.
Note that if w 6= v then φ(w) 6= φ(v) as φ(w)(e) = w and φ(v)(e) = v. Surjectivity follows from the definition
of A.

In addition to being a bijection, f has properties similar to a homomorphism. Notice that φ(wv) =
σwv and, σwv(u) = wvu = (σw ◦ σv)(u) for all u ∈ F (S). So, σwv = σw ◦ σv = φ(w)φ(v) meaning
φ(wv) = φ(w)φ(v). We can use this, along with the inverse as a bijection, to prove associativity of the group
operation in the free group.

φ((uv)w) = φ(uv)φ(w)

= (φ(u)φ(v))φ(w)

= φ(u)(φ(v)φ(w))

= φ(u)φ(vw)

= φ(u(vw)).

So, taking φ−1 on both sides, (uv)w = u(vw).

There is one more result that allows us to use function notation on a set to denote the free group:

Proposition 2. There is exactly one free group on a set S.

Proof. Suppose that F (S) and F ′(S) are free groups on S. We will show that F (S) = F ′(S). Every element
of F (S) can be written in the form s1s2 · · · sn, where n is a positive integer and si ∈ S ∪ S−1 for all integers
0 < i ≤ n. But as F ′(S) is also a free group of S, s1s2 · · · sn ∈ F ′(S). Thus, F (S) ⊆ F ′(S), and we can
similarly show that F ′(S) ⊆ F (S). Thus, F (S) = F ′(S).

Thus, we have formally established the free group. How, now, do we apply the free group to expressing
the products of elements of any group? Let φ : F (S)→ G be a function where G is a group and S ⊆ G. Then
every word in F (S) will be a product of elements of S or S−1, under which the group operation is defined.
So, we will let φ map elements of F (S) to their product under the group operation. Notice that for any s ∈ S,
φ(s) = s as s ∈ G, and likewise for every s−1 ∈ S−1 φ(s−1) = s−1. Therefore, for any word w = sε11 s

ε1
2 · · · sε1n

with si ∈ S and εi = ±1 for all integers 0 < i ≤ n, φ(w) = s1s2 · · · sn = φ(s1)φ(s2) · · ·φ(sn). This gives the
idea that perhaps homomorphisms are how we apply the free group to groups. In fact, free groups have an
interesting and unique property:

Proposition 3 (The Universal Property). If S is a set and F (S) the free group on that set, then if there
exists a mapping φ : S → G where G is a group, then there is a unique homomorphic extension of φ,
Φ : F (S)→ G.

Proof. Notice that for every s ∈ S, (s) is a word in F (S), so S ⊆ F (S).
=⇒ First we show the existence of such a Φ. Let Φ(sε11 s

ε2
2 · · · sεnn ) = φ(s1)ε1φ(s2)ε2 · · ·φ(sn)εn , where

s1, s2, . . . , sn ∈ S and εi = ±1 for every integer 0 < i ≤ n.
Next we show that Φ is a homomorphism. Let sε11 s

ε2
2 · · · sεnn and rδ11 r

δ2
2 · · · rδmm be elements of F (S), where

si, rj ∈ S and εi, δj = ±1 for every integer 0 < i ≤ n and 0 < j ≤ m. Furthermore, let i be the greatest

nonnegative integer such that for every integer 0 ≤ j < i, s
εn−j

n−j = r
−δi+1

i+1 (and if sn 6= r−11 then let i = 0).
Therefore:

(sε11 s
ε2
2 · · · sεnn )(rδ11 r

δ2
2 · · · rδmm ) = sε11 s

ε2
2 · · · s

εn−i

n−i r
δi+1

i+1 r
δi+2

i+2 · · · r
δm
m .

Notice that

Φ(sε11 s
ε2
2 · · · sεnn )Φ(rδ11 r

δ2
2 · · · rδmm ) = φ(s1)ε1φ(s2)ε2 · · ·φ(sn)εnφ(r1)δ1φ(r2)δ2 · · ·φ(rm)δm

3



by definition. For every integer 0 ≤ j < i, s
εn−j

n−j = r
δi+1

i+1 so Φ(s
εn−j

n−j ) = Φ(r
−δi+1

i+1 ) meaning φ(sn−j)
εn−j =

φ(ri+1)−δi+1 . Therefore, φ(sn−j)
εn−jφ(ri+1)δi+1 = e meaning that we can simplify the above expression to

simply:
φ(s1)ε1φ(s2)ε2 · · ·φ(sn−i)

εn−iφ(ri+1)δi+1φ(ri+2)δi+2 · · ·φ(rm)δm

But this is equal to Φ(sε11 s
ε2
2 · · · s

εn−i

n−i r
δi+1

i+1 r
δi+2

i+2 · · · rδmm ) meaning that:

Φ(sε11 s
ε2
2 · · · sεnn )Φ(rδ11 r

δ2
2 · · · rδmm ) = Φ(sε11 s

ε2
2 · · · s

εn−i

n−i r
δi+1

i+1 r
δi+2

i+2 · · · r
δm
m ).

Thus Φ is a homomorphism.
⇐= Suppose there exists two homomorphisms Φ and Φ′ that extend φ. Then Φ(s) = φ(s) =

Φ′(s) for every s ∈ S and Φ(s−1) = φ(s)−1 = Φ′(s−1) by the inverse property of homomorphisms.
Thus, take any word sε11 s

ε2
2 · · · sεnn where s1, s2, . . . , sn ∈ S and εi = ±1 for every integer 0 < i ≤ n.

We have Φ(sε11 s
ε2
2 · · · sεnn ) = φ(s1)ε1φ(s2)ε2 · · ·φ(sn)εn by the homomorphism property. But we also have

Φ′(sε11 s
ε2
2 · · · sεnn ) = φ(s1)ε1φ(s2)ε2 · · ·φ(sn)εn meaning that Φ = Φ′.

The universal property of free groups allows us to characterize the free groups.

Proposition 4. If |X| = |Y | then F (X) ∼= F (Y ).

Proof. Let φ be a bijection X → Y . Then φ is an injection X → F (Y ), so let Φ be the extension F (X) →
F (Y ) of φ. Now, let Φ′ be the extension F (Y ) → F (X) of φ−1. For every word xε11 x

ε2
2 · · ·xεnn , where

xi ∈ X and εi = ±1 for every integer 0 < i ≤ n, Φ′(Φ(xε11 x
ε2
2 · · ·xεnn )) = Φ′(φ(x1)ε1φ(x2)ε2 · · ·φ(xn)εn) =

φ−1(φ(x1))ε1φ−1(φ(x2))ε2 · · ·φ−1(φ(xn))εn = xε11 x
ε2
2 · · ·xεnn . Likewise, Φ(Φ′(xε11 x

ε2
2 · · ·xεnn )) = xε11 x

ε2
2 · · ·xεnn

meaning that Φ and Φ′ are inverses and so bijections. Thus, F (X) ∼= F (Y ).

Now, the converse of this theorem is true given finite sets, as follows:

Proposition 5. If F (X) ∼= F (Y ) and X and Y are finite sets, then |X| = |Y |.

Proof. Consider the set of all homomorphisms from F (X) to Z/2Z. By the universal property, each ho-
momorphism corresponds to a unique map X → Z/2Z, and there are exactly 2|X| such maps. Likewise,
there are 2|Y | such maps from F (Y ) to Z/2Z. But since F (X) ∼= F (Y ), every map F (X)→ Z/2Z is a map
F (Y )→ Z/2Z and vice versa, so the number of homomorphisms from F (X) to Z/2Z is equal to the number
of homomorphisms from F (Y ) to Z/2Z. Thus, 2|X| = 2|Y |, and since X and Y have finite cardinalities,
|X| = |Y |.

This same technique works for infinite sets, but we must assume the General Continuum Hypothesis to
show that the cardinalities of the two sets are equal.

The importance of the size of the set which the free group is defined on gives us the following definition:

Definition 3. The rank of a free group F (S) is |S|.

Proposition 5 tells us that the definition of the rank of a free group is well-defined, and Proposition 4
tells us that all free groups of the same rank are congruent. This fact will be important when we use free
groups to find homomorphisms of groups.

Now, the importance of the free group is that is the group of all possible products of a set of elements.
We are able to simplify these products to a certain extent by making sure there are no consecutive inverses,
but we cannot fully simplify every element of the free group, unlike a regular group.

Take the dihedral group as an instance of this phenomenon. The dihedral group Dn is generated by
the elementary rotation r and the elementary reflection s. If we consider the free group F ({r, s}), we have
the set of all products of r and s. But this group includes products like r2n and rs4 which can clearly be
simplified, based on the properties of r and s. These “properties”, which we will give a formal definition of,
are called relations. For the dihedral group, one set of relations on the generators r and s is: rn = e, s2 = e,
and rs = sr−1. These properties are what we need to take products of r and s — words of F ({r, s}) — and
simplify them to get the elements of the dihedral group.

So the ideas of generators, relations, and presentations are inherently linked to the free group. This
“link” is simply a homomorphism.
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Definition 4. A presentation of a group G is a pair of sets (S,R) such that G = 〈S〉, R ⊆ F (S) and there
exists a homomorphism π : F (S) → G such that kerφ is equal to the normal closure of R in F (S). (The
normal closure of a subset of a group is equal to the smallest normal subgroup of the group containing the
subset.)

Elements of S are known as generators of G, and elements of R are known as relations. We say G is
finitely generated if S is finite, and that G is finitely presented if S and R are both finite.

This definition of a presentation relies on a homomorphism φ to conpute the product of reduced words.
However, we can simplify these products use several identities, which are the relations. Specifically, comput-
ing the product of each relation gives the identity of G, which is why kerφ is generated by R (noting that
we must have kerφC F (S)).

This definition of a presentation is thus consistent with our prior notion of a presentation, but, for an
example, consider again the dihedral group Dn. Let S = {r, s} and R be the set {rn, s2, rsrs}, which is our
set of chosen relations. Furthermore, let N be the normal closure of R in F (S). We will then show that
Dn
∼= F (S)/N , with which we can use the canonical projection F (S) → F (S)/N to find a homomorphism

F (S)→ Dn with kernal N . We claim that F (S)/N = {N, rN, r2N, . . . , rn−1N, sN, srN, sr2N, . . . , srn−1N}.
For any word w ∈ F (S), consider wN . Notice that if uv ∈ wN that, as N is normal, v−1Nv = N meaning

that uNv = uvN = wN , meaning that substituting an element of N into an element of wN produces an
element of wN . For any rs in w, we can substitute in sr−1sr−1 after rs to give us sr−1. This is similar to
commutativity, meaning that there exists an element in wN in the form sxry. Using the fact that rn, s2 ∈ N
we can substitute in rn, s2, and any inverses of either to ensure that 0 ≤ x < 2 and 0 ≤ y < n. Thus, every
element of F (S) is represented in some element of the above set.

Furthermore, every element in this representation of F (S)/N is distinct, since, sirjs−xr−y 6∈ N for any
0 ≤ i, x < 2 and 0 ≤ j, y < n such that i 6= x or j 6= y.

In general, this is how we prove presentations: considering the normal closure of the set R of relations,
N , and proving that G ∼= F (S)/N . In this same way, we can prove the following theorem.

Theorem 6. Every finite group G is finitely presented.

Proof. Let S = G and R be the set of words ghk−1, where gh = k in G. Let N be the normal closure of
R. Now consider F (S)/N . Let f : G → F (S)/N be a function such that f(g) = gN . Then notice that
f(g)f(h) = (gN)(hN) = ghN , and if gh = k in G, that ghk−1 ∈ N , so (kh−1g−1)gh = k ∈ ghN . Thus,
f(g)f(h) = ghN = kN = f(k) = f(gh), and so f is a homomorphism.

First, we will show f is surjective. If w = g1g2 · · · gn ∈ F (S), then consider the coset wN . Notice
that, if gn−1gn = k in G, that gn−1gnk

−1 ∈ N , so kg−1n g−1n−1 ∈ N . By the substitution property above,

w′ = g1g2 · · · gn−2(kg−1n g−1n−1)gn−1gn = g1g2 · · · gn−1k ∈ wN . Notice that w′ has has length one less than
w, and so repeating this procedure multiple times, we can write wN as gN , where g ∈ G = S. Thus, f is
surjective.

Next, for injectivity. Suppose that gN = hN , where g, h ∈ G. Then h ∈ gN meaning h−1g ∈ N . If
h−1g = k in G, then h−1gk ∈ N meaning that (h−1g)−1h−1gk = k ∈ N . But this is impossible as every
word in N must either be the empty word or a word of at least length 3. So g = h, proving injectivity.

Thus, F (S)/N ∼= G, meaning that there exists a homomorphism φ : F (S) → G with kerφ = N . As R
and S are finite, G is finitely presented by (S,R).
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