
Euler Circle: Group Theory and the Rubik’s Cube

Qu Gao

May 2020

Abstract

This expository paper will introduce some group theory concepts of the Rubik’s
cube, which will culminate in showing the two fundamental laws of cubology. The
paper will use Joyner’s book “Adventures in Group Theory” [1], Bandelow’s book
“Inside Rubik’s cube and beyond” [2], and Daniels’ paper [3] as reference material.

1 Introduction

From the author’s (completely unbiased) opinion, the impact of the Rubik’s cube on
our lives is profound 1. In 2015, over 350 million copies of the toy had been sold [4].
The elegant simplicity of matching up the faces, and the fiendish difficulty of attempting
to do so, has captivated people of all generations. This paper will answer the following
questions: if I disassemble the cube and reassemble the cube, how do I determine whether
I can take the Rubik’s cube back to its start position by rotating the layers? How do
I know whether a given change in the position of the cube is possible without having
to take the cube apart? How does composing operations behave? Which operations
commute, and which operations do not?

2 Terminology of the Rubik’s Cube

Before we can discuss the structure of the Rubik’s cube, we must lay out some termi-
nology to help us describe the components of the Rubik’s cube and the actions that can
be carried out on the Rubik’s cube.

Definition 2.1 (Cubie). A cubie is one of the 26 small cubes that make up the Rubik’s
cube (abbrev. “the cube”). Cubies are either face, edge, or corner cubies.

Definition 2.2 (Facet). A facet is one of the 54 small faces on the Rubik’s cube. Face
cubies have 1 facet, edge cubies have 2 facets and corner cubies have 3 facets.

Definition 2.3 (Cubicle). A cubicle is the location of the cubie in the cube. The 8
corner cubies are located by 3 initials (e.g. urf denotes cubie on the right of the front
facing corner of the upper face), and the 12 edge cubies are located by 2 initials (e.g ur
denotes the cubie on the right edge of the upper face).

1This can be seen from the fact that the Rubik’s cube has infiltrated episodes of the Simpsons and
music videos of the Spice girls. More personally, a friend of the author participated in the event at the
London O2 Arena which created the world record in 2012 for the most simultaneous Rubik’s cube solves
(1,414) - sadly the author was too young to attend at the time.
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Definition 2.4 (Orientation). An edge cubie can be oriented in 2 different ways within
its cubicle; a corner cubie can be oriented 3 different ways within its cubicle. To describe
the orientation of a cubie, we label all the facets of the mobile cubies at the start position
as in figure 1, and we imagine a fixed, immobile skin over the cube (which doesn’t impede
us from doing the basic moves) which labels all the facets, also as in figure 1. The
orientation of each cubie is defined to be the number on the mobile facet of the cubie
which is below the fixed facet labelled 0.

Figure 1: Labelling of the facets. [3]

Definition 2.5 (Right twisted, left twisted, incorrect orientation.). A left twisted and
right twisted edge cubie has its orientation increase by 1 and 2 (mod 3) respectively when
an operation is carried out. An incorrectly twisted edge cubie its orientation increase by
1 (mod 2) when an operation is carried out.

Definition 2.6 (Basic moves and anticlockwise moves). Holding the cube with one face
fully towards you, the six faces are labelled by their position in relation to you: up,
down, right, left, front, back. A basic move is a 90 degrees clockwise rotation of one of
the six outer layer faces, labelled by the face which is rotated - U, D, L, R, F, B. An
anticlockwise move of a face is denoted by an apostrophe, e.g. U ′ = U3 is rotating the
upper face 90 degrees anticlockwise.

Remark 2.6.1. Technically we can include middle layer moves, but we will ignore them
in this paper since middle layer moves can be written as a sequence of outer layer moves.

Definition 2.7 (Cube move). A cube move is a move which acts a distance-preserving
rigid motion on the entire Rubik’s cube (ignoring reflections, which are physically impos-
sible on the cube). A cube move could either be a rotation about a face axis connecting
the centres of opposite faces, a rotation about a corner axis connecting corners of maxi-
mal distance apart, and an edge rotation connecting centres of edges of maximal distance
apart.

Remark 2.7.2. The group of cube moves is isomorphic to S4 because each cube move
has a 1-to-1 correspondence to a permutation of the four diagonally opposite corner axes.

3 Wreath Products and the Signum Function

The signum function, as we will see in the First Fundamental Law of Cubology, is found
in one of the criteria for determining whether a position is possible.
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Definition 3.1 (Inversions, Even/Odd Permutations). Consider a permutation f ∈ Sn.
A pair (i, j) of elements in the set {1, 2, ..., n} is an inversion iff i < j and f(i) > f(j).
The number of inversions in a permutation is z. The parity of a permutation is the
same as the parity of z.

Definition 3.2 (The signum function). The signum function of a permutation f is
sgn(f) = (−1)z.

Theorem 3.1. For all f, g ∈ Sn, sgn(fg) = sgn(f) · sgn(g).

Proof. We have sgn(f) =
∏

1≤i<j≤n
f(i)−f(j)

i−j , where the product is across all ordered
pairs of elements from {1, ..., n}. Then

sgn(fg) =
∏

1≤i<j≤n

fg(i)− fg(j)

i− j

=
∏

1≤i<j≤n

fg(i)− fg(j)

g(i)− g(j)

∏
1≤i<j≤n

g(i)− g(j)

i− j

= sgn(f) · sgn(g)

The wreath product can describe the group of operations in the Rubik’s cube, and
can help us understand how composing operations affects the position of the cube.
Recall the two definitions of the semi-direct product:

Definition 3.3 (Inner definition of the semi-direct product). Let G be a group. Let
H1 and H2 be subgroups of G. Then G is the semi-direct product of H1 and H2 (i.e.
G = H1 oH2) if the following 3 conditions are met:

1. G = H1 H2, that is, for all g ∈ G, g can be expressed uniquely as g = h1h2, where
h1 ∈ H1 and h2 ∈ H2.

2. H1 ∩H2 = {e}

3. H1 / G.

Definition 3.4 (Outer definition of the semi-direct product). Let H1 and H2 be groups.
Construct a homomorphism ϕ : H2 → Aut(H1). Then the elements in the semi-direct
product are H1 oϕ H2 = {(h1, h2) : h1 ∈ H1, h2 ∈ H2}. Multiplication between group
elements is defined by (h1, h2)(h

′
1, h
′
2) = (h1 · ϕ(h2)h

′
1, h2h

′
2).

Remark 3.4.3. It is fairly straightforward to show that the semi-direct product multipli-
cation in the outer definition satisfies the group properties of identity, inverses, closure,
and associativity. This will be left to the reader.

Remark 3.4.4. It is worth checking that the inner and outer definitions are consistent.
The outer semi-direct product H1 oϕ H2 has subgroups H1 = {(h1, e) : h1 ∈ H1} and
H2 = {(e, h2) : h2 ∈ H2} isomorphic to H1 and H2 respectively. H1 and H2 satisfy the
three conditions of the inner definition, so we see that an outer semi-direct product is
an inner semi-direct product. Working in the other direction, note that for the inner
semi-direct product we can define a homomorphism ϕ : H2 → Aut(H1) by conjugation:
ϕ(h2)(h1) = h2h1h

−1
2 . Then consider multiplication in G = H1 oH2:

h1h2h
′
1h
′
2 = h1(h2h

′
1h
−1
2 )h2h

′
2 = (h1ϕ(h2)(h

′
1))(h2h

′
2).
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The above multiplication follows the definition of outer semi-direct product multiplica-
tion. So we can define an isomorphism between H1 o H2 and H1 oϕ H2, by mapping
h1h2 ∈ H1 oH2 to (h1, h2) ∈ H1 oϕ H2. This shows that an inner semi-direct product
is an outer semi-direct product.

Now, let us turn our attention to the wreath product, which is an extension to the
semi-direct product.

Definition 3.5. (Wreath product) Let G1, G2 be groups and let G2 be a group acting on
a finite set X2 = {x1, x2, ..., xm}. Let Gm1 denote the Cartesian product of G1 with itself
m times. Then the wreath product of G1 with G2 (denoted G1 oG2) is:

G1 oG2 = Gm1 oϕ G2

where ϕ : G2 → Aut(Gm1 ). G2 acts on the elements in Gm1 in the same way as G2 acts
on X2.

Example 3.5.1. Consider (Z/2Z)3 o S3 = {(a1, a2, a3), ρ) : a1, a2, a3 ∈ Z/2Z, ρ ∈ S3}.
Then ρ ∈ S3 acts on (Z/2Z)3 in the same way that ρ acts on the set {1, 2, 3} - that is,
ϕ(ρ)(a1, a2, a3) = (aρ−1(1), aρ−1(2), aρ−1(3)). Thus we have

((a1, a2, a3), π)((b1, b2, b3), ρ) = ((a1, a2, a3) + ϕ(π)((b1, b2, b3), πρ).

= ((a1, a2, a3) + (bπ−1(1), bπ−1(2), bπ−1(3)), πρ)

= ((a1 + bπ−1(1), a2 + bπ−1(2), a3 + bπ−1(3)), πρ)

As we will soon see, the positions of the Rubik’s cube under the composition of operations
behave similarly to the multiplication defined in example 3.5.1.

4 Positions and Operations of the Rubik’s Cube

Before we introduce the Rubik’s cube group, we need to introduce a few more definitions
to describe the sequence of changes a person will make to solve the cube.

Definition 4.1 (Manoeuvre). A manoeuvre is a finite sequence of basic moves, in which
no consecutive layer moves act on the same layer. We write out the manoeuvre, left-to-
right, as the sequence of base moves. In this paper, some manoeuvres will be labelled with
a number, eg m100. This corresponds to Bandelow’s naming system for manoeuvres; see
[2],

Remark 4.1.5. When we consider the Rubik’s cube group, we can choose whether or
not to include cube moves in a manoeuvre. In this paper, we will choose not to for
simplicity. We can consider positions that can rotated into each other as essentially the
same position, but just seen from the perspective of another observer.

Definition 4.2 (Position). The position of a Rubik’s cube is described by the location
and orientation of each edge and corner cubie. A position can therefore be described as
a 4-tuple p = (ρ, σ, x, y).
ρ ∈ S8 (the permutation of corner cubies within 8 corner cubicles)
σ ∈ S12 (the permutation of edge cubies within 12 edge cubicles).
x = (x1, x2, ..., x8) where xi = 0, 1, or 2 (the orientation of each of the 8 corner cubie in
the corner cubicles, with the corner cubicles labelled from 1 to 8 in a fixed way)
y = (y1, y2, ..., y12) where xi = 0 or 1 (the orientation of each of the 12 edge cubies in the
cubicles, with the edge cubicles labelled from 1 to 12 in a fixed way, like an imaginary
skin over the cube). We can consider x and y like coordinates.
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Remark 4.2.6. If we wanted to include cube moves, the position of the cube would be
described by the 5-tuple (ρ, σ, τ, x, y), where τ ∈ S6 (permuting the face cubies in the 6
face cubicles).

Definition 4.3 (Operation). An operation permutes cubies in their cubicles, and (pos-
sibly) permutes their orientation. Operations are written in cycle notation in terms of
the cubicles. e.g. (+ufl, rub) tells us that a corner cubie in cubicle rub is right twisted
as it moves to cubicle ufl, and the cubie in cubicle ufl does not change orientation when
it moves to cubicle rub. + denotes that a corner cubie is right twisted when it enters a
cubicle, and − denotes a corner cubie is left twisted. For edge cubies, there are only two
orientations so an orientation change is always denoted +, e.g. (+uf)(+ur).

Remark 4.3.7. Note that operations are distinct from manoeuvres. Different manoeu-
vres can execute the same operation. For example, m5 = (R(U2RF ′D2FR′)2R′ and
m5c = URU2RU2R′U ′RU ′R′U2R′U2RUR′ are two distinct manoeuvres but carry out
the same operation (+urf)(-ufl).

5 The Group Structure of the Rubik’s Cube

Let us discuss some more obvious groups of the Rubik’s cube.

Definition 5.1. (Illegal Rubik’s Cube Operation Group) The illegal Rubik’s Cube Group,
G∗, is the set of all operations on the cube. This includes operations that involve taking
apart and reassembling the cubies (but we are not allowed to rearrange the stickers on
the facets).

From the perspective of solving the cube (without taking it apart, of course), we par-
ticularly want to study the operations that can be carried out by a sequence of basic
moves.

Definition 5.2. (Legal Rubik’s Cube Operation Group) The legal Rubik’s cube group
(abbrev. ”Rubik’s cube group”), G, is a subgroup of the illegal Rubik’s cube group and
is the set of all operations that can be executed by manoeuvres.

We can similarly define the illegal and legal manoeuvre group, M∗ and M respectively.
We can also define the illegal and legal position group, P ∗ and P respectively.

We can derive some relations between these groups. For example, there exists a surjective
(but not injective) homomorphism ψ : M → G which maps every manoeuvre to the op-
eration it carries out. We can consider manoeuvres to be equivalent iff ψ(ma) = ψ(mb).

There is a bijection between operations in G∗ and positions in P ∗; Ψ : G∗ ↔ P ∗,
where Ψ(p) = g IP . G∗ is a group action of operations on the the set of positions, and
each element in G∗ is acts on the positions in P ∗ by definition uniquely. This bijection
means that p ∈ P iff g ∈ G.

6 The Fundamental Laws of Cubology

How do we determine whether p ∈ P ∗ is also an element of P? The first fundamental
law of cubology allows us to determine whether a position is in the same orbit as the
start position Ip under the group action of G.
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Theorem 6.1 (First Fundamental Law of Cubology). A position p = (ρ, σ, x, y) ∈ P ∗
is also in P if and only if all three criteria is met:

i sgn(ρ) = sgn(σ)

ii x1 + x2 + ...+ x8 ≡ 0 (mod 3)

iii y1 + y2 + ...+ y12 ≡ 0 (mod 2)

Proof. Showing that the three criteria are necessary conditions for a position
to be legal. It is quite clear that the three criteria hold for the start position. In
addition, each basic move U, D, R, L, F, B creates an edge 4-cycle and a corner 4-cycle.
Since 4-cycles are an odd permutation, sgn(ρ) = sgn(σ) holds after every basic move.
Thus sgn(ρ) = sgn(σ) is invariant under manoeuvers, satisfying (i).

For basic moves R, L, F, B, for two xi’s, the coordinate value increases by 1 (mod 3)
and for two xi’s, the coordinate value decreases by 1 (mod 3) and the other four coor-
dinate values do not change, so

∑8
1 xi ≡ 0 (mod 3) still holds. Basic moves U and D

preserve the value of
∑8

i=1 xi (mod 3). Thus
∑8

i=1 xi ≡ 0 (mod 3) is invariant under
all manoeuvres, satisfying (ii).

For each basic move, four coordinate values of y change by 1 (mod 2) and the other
eight coordinate values are unchanged. Thus (iii) is satisfied.

Showing that the three criteria are sufficient conditions for a position to be
legal. We will show that for any position p satisfying the three criteria, there exists a ma-
noeuvre Ṁ acting on p such that Ṁp = Ip. WLOG, assume that sgn(ρ) = sgn(σ) = 1;
if a position p′ has sgn(ρ) = sgn(σ) = −1, then applying a basic move to p′ will give a
new position where sgn(ρ) = sgn(σ) = 1.

Firstly, we will show that we can always move the corner and edge cubies back into
their starting cubicles. Consider any manoeuvre for a corner 3-cycle, for example
m100 = RB′RF 2R′BRF 2R2. m100 executes the operation

(ufl, urf, ubr) = (X1, X2, X3)(X4)(X5)(X6)(X7)(X8).

For brevity, the above operation will be simply referred to as (X1, X2, X3). There exists
a manoeuvre, denoted m̃, composed of at most two basic cube moves, which moves Xi

(for 4 ≤ i ≤ 8) to X3 (we don’t need to worry about making sure that m̃ preserves the
positions the other cubies, so long as m̃ preserves X1 and X2). Then we can create a
manoeuvre, M, that executes the corner 3-cycle (X1, X2, Xi) (keeping all other cubies
fixed): M = m̃ m100 m̃′. Thus we can create a manoeuvre that executes any edge
3-cycle of the form (X1, X2, Xi) for 3 ≤ i ≤ 8. Since 〈(X1, X2, Xi)〉 is a group of all
permutations in S8 with sgn(ρ) = 1, there is an element in 〈(X1, X2, Xi)〉, namely mC ,
that will move the corner cubies into the correct cubicle.

Next, we show that we can move the edge cubies into their starting positions after
the corner cubies have been restored. m510 = F 2UMRU

2M ′RUF
2 executes the opera-

tion (uf, ul, ur) = (Y1, Y2, Y3). There exists a manoeuvre, denoted m̂, which moves a
fixed cubie Yi into the cubicle occupied by Y3. By manoeuvre M̌ = m̂ m510 m̂

′, we can
create any operation of the form (Y1, Y2, Yi). 〈(Y1, Y2, Yi)〉 generates all permutations
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of edges in S12 such that sgn(σ) = 1, so there exists an element of 〈(Y1, Y2, Yi)〉 where
ME MC p = Ip.

At this point, corner and edge cubies have been restored their starting cubicles. We
now show that it is possible to reorient cubies within their cubicles so that the cube
returns to the start position. It follows from our proof that

∑8
i=1 xi ≡ 0 (mod 3) and∑8

i=1 yi ≡ 0 (mod 2) is invariant under manoeuvres that there is a 1-to-1 correspondence
between each right-twisted corner and each left-twisted corner, and that incorrectly ori-
ented edges come in pairs.

By manoeuvre m415b = LFR′F ′L′U2RURU ′R2U2R → (+uf)(+ur), we can reorient
pairs of edges. If the incorrectly oriented pair of edge cubies are not diagonally adjacent
each other on the same face, then by repeatedly carrying out cube moves and carrying
out m415b on one correctly oriented and one incorrectly oriented cubie diagonally ad-
jacent to each other on the same face, we can still eventually reorient the edge cubie
(since we can get to any edge cubie by moving to diagonally adjacent cubies (that share
the same face) only, without having to revisit any cubies).

By manoevre m5 = R(U2RF ′D2FR′)2R′ → (+urf)(−ufl), we can reorient pairs of
oppositely twisted corner cubies on the same long edge of the cube. Analogously, if the
oppositely twisted pair of corner cubies do not share the same long edge of the cube,
then we can still ”chase around the cube” to reorient the aforementioned pair of corner
cubies. This completes the argument.

Corollary 6.1.1. If you (perish the thought 2) take apart the Rubik’s cube and randomly
reassemble the cubies, the probability that you will get a position where you can solve the
cube using the basic moves is 1

12 .

Proof. |P ∗| = 8! · 38 · 12! · 212 is the number of all illegal and legal positions. Criteria (i)
of the first law halves |P ∗|, because |Sn| = 0.5|Sn|; criteria (ii) reduces |P ∗| to a third,
because we can freely choose the coordinate value of x1, ..., x7 but this determines x8;
criteria (iii) reduces |P ∗| by a quarter, because y1, ..., y11 determines y12. Thus

|P | = 1/12 · |P ∗| ≈ 4.3× 1019.

The Second Fundamental Law of Cubology is really the First Fundamental Law in
disguise.

Theorem 6.2 (Second Fundamental Law of Cubology). An operation is legal, if and
only if the following three conditions are fulfilled:

1. The total number of cycles of even length (corner and edge cycles) is even.

2. The number of right-twisting corner cycles is equal to the number of left-twisting
cycles in modulo 3.

3. The number of reorienting edge cycles is even.

2In the cubing community, disassembling the Rubik’s cube for any reason other than for lubricating
the cube is considered a permanent badge of dishonour of the worst kind. Shame and guilt will forever
follow you. You have been warned.
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Proof. The bijection between P ∗ and G∗ allows us to rename the results of the first law in
terms of operations. sgn(ρ) = sgn(σ) iff there are an even number of odd permutations
in total in the operation, so criteria (ii) is equivalent to (1.). It can be seen from the
proof of the first law that criteria (2.) and (3.) are true iff criteria (ii) and (iii) is true
respectively.

Remark 6.0.8. A position derived from a possible position, by reorienting a cubie,
swapping the cubicles of two edge cubies, or swapping two corner cubies, is impossible.

7 The Group Structure of the Rubik’s Cube Revisited

Before we conclude this paper, we shall link the elements of G to wreath products.

Preposition 7.1. The operations on the corner cubies can be described by (C3)
8 o S8).

Proof. Let gIp = (x, ρ) and g∗Ip = (x∗, ρ∗) denote the positions of the corner cubies.
Then consider carrying out operation g followed by operation g∗ on the start position.
After operation g, orientation of the corner cubies is given by x. Applying operation g∗

will permute the cubies within the cubicle according to ρ∗, and will therefore permute
the coordinate elements within x in the same way as ρ∗ permutes the eight corner cubies.
Then x∗ will be added onto the permuted x. Thus,

g∗gIp = (x∗ + ϕ(ρ∗)x, ρ∗ρ)

= ((x∗1, x
∗
2, ..., x

∗
8) + (xρ∗−1(1), xρ∗−1(2), ..., xρ∗−1(8)), ρ

∗ρ)

= ((x∗1 + xρ∗−1(1), x
∗
2 + xρ∗−1(2), ..., x

∗
8 + xρ∗−1(8)), ρ

∗ρ)

Notice how multiplication of operations works in the same way as multiplication in
(C3)

8 o S8), and how there is a bijection between the operations on corner cubies and
elements in (C3)

8 o S8). Thus operations on corner cubies can be described by (C3)
8 o

S8).

Preposition 7.2. The operations on the edge cubies can be described by (C2)
12 o S12.

Proof. In a similar vein, let hIp = (y, σ) and h∗Ip = (y∗, σ∗) denote positions of edge
cubies. Then composing operations h and h∗ gives

h∗hIp = (y∗ + ϕ(σ∗)y, σ∗σ)

= (y∗1 + yσ∗−1(1), y
∗
2 + yσ∗−1(2), ..., y

∗
12 + yσ∗−1(12)), σ

∗σ)

so the group of operations on the edge cubies is isomorphic to (C2)
12 o S12.

Preposition 7.3. The illegal Rubik’s cube operation group is G∗ = ((C2)
12 o S12) ×

(C3)
8 o S8)

Proof. This follows from definition 4.2 and the bijection between P and G.

Let us also give one of many possible examples of how we can use our two shiny new
fundamental laws of cubology to deduce some information about the subgroups of G.

Theorem 7.1. The centre of the Rubik’s cube group, Z(G), consists of only the iden-
tity operation and the superflip operation, (+uf)(+ul)(+ub)(+ur)(+df)(+dl)(+db)(+dr)
(+fl)(+lb)(+br)(+rf).
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Proof. Let gIP = (ρ, σ, x, y) for g ∈ Z(G) and g∗Ip = (ρ∗, σ∗, x∗, y∗) and for any g∗ ∈ G.
Since for n ≥ 3, Z(Sn) = {e} 3, ρ = IS8 and σ = IS12 .
So we only need to show that

(IS8 , IS12 , x, y)(ρ∗, σ∗, x∗, y∗) = (ρ∗, σ∗, x∗, y∗)(IS8 , IS12 , x, y)

(ρ∗, σ∗, x+ x∗, y + y∗) = (ρ∗, σ∗, x∗ + xρ∗, y∗ + yσ∗).

This amounts to showing that x = ρ∗x for all ρ∗ ∈ S8 and y = σ∗y for all σ∗ ∈ S12. For
this to be true, we must have that x1 = x2 = ... = x8 and that y1 = y2 = ... = y12. The
First Fundamental Law prevents xi = 1 and xi = 2. So xi = 0, meaning that elements in
the centre subgroup do not change corner cubie orientation. Thus, the only two options
for elements in the centre group is for yi = 1 (corresponding to the superflip) and for
yi = 0 (corresponding to the identity).

Remark 7.0.9. The centre group is very small, especially considering that |G| = |P |
is massive, as shown in corollary 6.1.1! This perhaps offers some explanation for why,
without knowledge of standard algorithms used to solve the Rubik’s cube, it is difficult to
solve the cube; operations on the Rubik’s cube are extremely non-commutative, and so
the order in which operations are carried out matters a great deal.

8 Concluding remarks and further questions

The topics covered in this paper just scratches the surface of the interesting structures
that can be found in the Rubik cube. Although the Rubik’s cube might seem like a
quaint little toy, some structures in the Rubik’s cube can actually have fairly deep links
to other fields of mathematics, which the author invites the reader to explore. For
example, we can find a subgroup of G which is isomorphic to the quaternion group:

1 := IG

−1 := (+uf)(+ul)(+ub)(+ur)

i := (+ur, uf)(+ul, ub)

j := (+ul, uf)(+ub, ur)

k := (+uf, ub)(+ul, ur)

−i := i−1

−j := j−1

−k := k−1.

The above operations obey the quaternion rules i2 = j2 = k2 = −1, ij = (−1)ji = k,
jk = (−1)kj = i, ki = (−1)ik = j. Are there any more subgroups of G which are
isomorphic to other interesting groups?

Even further afield, Bandelow’s book hints at a most strange connection between the
behaviour of corner cubies in G and elementary physical particles. From the First Funda-
mental Law, corner cubies can only be twisted in pairs in opposite directions, or twisted
in triplets in the same direction. In a similar way, quarks and antiquarks can only exist

3Let f ∈ Sn. Then there exists i 6= j such that f(i) = k and there exists j 6= k such that f(k) = j.
We can then find an element in g ∈ Sn, where g(k)=k and g(i)=j. Then we have that fg(i) = f(j) 6= k,
and gf(i) = k. Hence fg(i) 6= gf(i).
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as a quark-antiquark pair (the “meson”), or as a quark-triplet (the “baryon”), or as an
antiquark-triplet (the “antibaryon”). The author has effectively zero understanding of
elementary particle physics, but the author wonders whether there might be a group
theoretical reason for this connection, and wonders whether the Rubik’s cube exhibits
symmetries that are intrinsic to the physical world. As Bandelow tentatively asks, “will
the day come, when new elementary particles are looked for and actually found on the
basis of the properties of our corner cubies?”.
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