
Intro to Category Theory

Emma Cardwell

June, 2020

1 Introduction

Category theory was formulated as a way to study the relationships between different mathematical
structures. It was first introduced by Samuel Eilenberg and Saunders Mac Lane in 1945. It was
first used mainly for algebraic topology and abstract algebra. In the 1950s, mathematicians began
using category theory for algebraic geometry. Since then, category theory has been applied to logic,
computer science, linguistics, philosophy, and several other areas [Awo11].

1.1 Definition of Category

A category is similar to an ordered set of mathematical structures. The purpose of categories is
to connect mathematical structures together with structure-preserving functions. A category C is
made up of objects and functions, more specifically, A Category C consists of the following:

1. A class of objects, often denoted as Ob(C). If an object x ∈ Ob(C), we say that the object is
in the category, or x ∈ C.

2. Morphisms (functions) between objects. For any two elements x, y ∈ Ob(C), there is a set of
morphisms from x to y, called HomC(x, y). If f ∈ HomC(x, y), then f : x → y. The set of
all morphisms between objects in C is denoted as Hom(C).

We also can compose morphisms together: For any morphisms f : x → y and g : y → z, the
composite of f and g is defined as: g ◦ f : x → z, and is a morphism in HomC(x, z). The objects
and morphisms in C must satisfy the following conditions with regards to morphism composition:

1. Morphisms are associative: For objects a, b, c, d ∈ C, if f : a → b, g : b → c, and h : c → d,
then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. Every object has an identity morphism: For every x ∈ C, there exists a morphism idx ∈
Hom(C) with idx : x → x such that, for every f : a → x and g : x → b, we have idx ◦ f = f
and g ◦ idx = g.

For a morphism between two objects, f : x → y, we say that x is the domain of f , and y is the
codomain of f . We denote this as x = dom f and B = cod f .

Example 1.1 One example of a category is Set. The objects in Set are all of the finite sets, and
the morphisms of Set are functions between sets. We can always compose functions between sets,
and composition is always associative. There is always exactly one function from a set to itself such
that no elements in the set are permuted, so the identity property is also satisfied.

1

Example 1.2 Another category is the category of groups, Grp. All groups are objects in Grp and
the morphisms of Grp are group homomorphisms.

Example 1.3 Any deductive system T can be thought of as a category with logical statements as
objects and proofs or justifications for the statements as morphisms [Mar20].

One way to think about objects in general is as sets with varying levels of additional structure
imposed on them (depending on what category they belong to).

1.2 Diagram Notation

We can use diagrams to represent categories. Each node is an object, and the arrows between nodes
represent morphisms between the objects. Diagrams can help us better visualize morphisms and
their compositions in a category. A directed path of arrows represents a composition. For example,
the following diagram represents h ◦ g ◦ f , where f : A→ B, g : B → C, and h : C → D:

A
f−−→ B

g−−→ C
h−−→ D

2 More about Morphisms

Morphisms can also have some additional properties that include (but aren’t limited to):

Definition 2.1 A morphism f : x → y is a monomorphism if, for all morphisms g : w → x and
h : w → x, if f ◦ g = f ◦ h, then g must equal h.

Example 2.2 A function in the category Set is a monomorphism if and only if it is an injective
function. (Note that this is not true for all categories).

Definition 2.3 A morphism f : x → y is an epimorphism if, for all morphisms g : w → x and
h : w → x, if g ◦ f = h ◦ f , then g must equal h.

Example 2.4 A function in the category Set is an epimorphism if and only if it is a surjective
function. (Note that this is not true for all categories).

Definition 2.5 A morphism between two objects in a category, f : x → y, is an isomorphism if
there exists some other morphism f−1 : x→ y such that f−1 ◦ f = idx and f ◦ f−1 = idy. We then
say that x and y are isomorphic.

Example 2.6 A function in the category Set is a monomorphism if and only if it is injective, and
an epimorphism if and only if it is surjective. Thus, a function is an isomorphism in Set if and
only if it is bijective.

As we shall see, some types of categories are defined by the types of morphisms they contain.

2

3 Types of Categories

Definition 3.1 A monoid is a category with one object.

Example 3.2 The set of all finite strings over some fixed alphabet Σ forms a monoid with string
concatenation as the operation. The empty string serves as the identity element. This monoid is
denoted Σ∗ and is called the free monoid overΣ.

Definition 3.3 A groupoid is a category with only isomorphisms.

We can define groups using category theory.

Proposition 3.4 The set of all morphisms of a monoid that is also a groupoid is a group.

This seems trippy, so let’s break it down further. Let M be a monoid. Since M only has one object,
we can let Ob(M) = m, and the set of all morphisms in M must be from m to m. Equivalently,
HomM(m,m) = Hom(M). If we think of M as a set, then the morphisms are simply mappings
between elements of the set. We can compose any two morphisms and get another morphism that
belongs to M. Furthermore, from our definition of Category, these morphisms must be associative,
and there must be an identity morphism. Sounding familiar? The morphisms seem to satisfy the
properties of groups, except we’re missing one - inverses. That’s where groupoids come in. If M is
a groupoid, then every morphism f : m → m has an inverse. By definition of isomorphism, there
must exist some other morphism f−1 : m → m such that f ◦ f−1 = idm = f−1 ◦ f . Now, the
morphisms of M are associative and have closure, identity, and inverses, so Hom(C) is a group. �

4 Direct Product of Categories

C×D, the product of two categories C and D, has objects of the form (c, d), where c ∈ Ob(C) and
d ∈ Ob(D). The resulting morphisms are of the form (f, f ′) : (c, d)→ (c′, d′) where f ∈ HomC(c, c′)
and f ′ ∈ HomD(d, d′). A composition of morphisms is represented as (g, g′)◦(f, f ′) = (g◦f, g′◦f ′).

Let’s show that C ×D is indeed a category. We know that C ×D has a set of objects, a set of
morphisms between the objects, and a form of morphism composition. To prove that C ×D is a
category, we still need to show associativity for morphisms and the existence of identity morphisms
for every object.

To show associativity, let’s consider the morphisms (f, f ′) : (a, a′)→ (b, b′), (g, g′) : (b, b′)→ (c, c′),
and (h, h′) : (c, c′)→ (d, d′), where (a, a′), (b, b′), (c, c′), (d, d′) ∈ Ob(C×D), and (f, f ′), (g, g′), (h, h′) ∈
Hom(C×D).

(h, h′) ◦
(

(g, g′) ◦ (f, f ′)
)

= (h, h′) ◦ (g ◦ f, g′ ◦ f ′)

Since f, g, h ∈ Hom(C) and f ′, g′, h′ ∈ Hom(D), the morphisms f, g, h and f ′, g′, h′ must be
associative, so we can regroup the compositions:

= (h ◦ g ◦ f, h′ ◦ g′ ◦ f ′) =
(

(h ◦ g) ◦ f, (h′ ◦ g′) ◦ f ′
)

=
(
h ◦ g, h′ ◦ g′

)
◦ (f, f ′)

=
(

(h, h′) ◦ (g, g′)
)
◦ (f, f ′)

∴ (h, h′) ◦
(

(g, g′) ◦ (f, f ′)
)

=
(

(h, h′) ◦ (g, g′)
)
◦ (f, f ′)

3

Thus, we’ve shown that the composition of morphisms in C×D is associative.

Finally, the identity morphism for any object (c, d) ∈ C×D is (Idc, Idd), where Idc is the identity
morphism for c ∈ Ob(C), and Idd is the identity morphism for d ∈ Ob(D). Since every c ∈ Ob(C)
and every d ∈ Ob(D) has an identity morphism, every object (c, d) ∈ C ×D must also have an
identity morphism.

Example 4.1 Since groups are monoids, the direct product of groups is essentially the same as the
direct product of monoids. For groups G and H, we can construct G × H by considering the set
generated by

{〈g, h〉 | g ∈ G, h ∈ H}

Since the elements of a group are the morphisms of a monoid, operations on elements are equivalent
to compositions on morphisms. So, we define the binary operation of G×H as

〈g, h〉 · 〈g′, h′〉 = 〈g · g′, h · h′〉

Since monoids are categories with only one object, the product of monoids must generate another
monoid. Thus, there is exactly one object in G ×H. That implies that there is only one identity
morphism for G×H, which is 〈eG, eH〉.
Lastly, inverses. Since for all g ∈ G, H ∈ H, 〈g, h〉 ∈ G×H, we have

〈g, h〉 · 〈g−1, h−1〉 = 〈eG, eH〉 = 〈g, h〉 · 〈g, h〉−1

Thus, inverses are preserved.

5 Functors

A functor is a mapping between categories. The diagram below illustrates a functor between
categories C and D:

A functor must include some correspondence between the objects of each category, the morphisms
of each category, the domains and codomains of the morphisms, the identity morphisms, and the
composition of morphisms in each category.

4

More formally,

Definition 5.1 Let F : C → D denote a covariant functor from category C to category D. F must
contain:

1. A function that relates the objects of C to the objects of D: F : Ob(C) → Ob(D). For an
object c ∈ Ob(C), we typically write F (c) to denote the corresponding object in D.

2. A function that relates the morphisms of C to the morphisms of D: For any two objects
c1, c2 ∈ Ob(C), we have a function F : HomC(c1, c2)→ HomD(F (c1), F (c2)).

And F must satisfy the following properties:

1. Identity morphisms are preserved, so for any object c ∈ Ob(C), F (idc) = idF (c).

2. The composition of morphisms is preserved, so for any objects c1, c2, c3 ∈ Ob(C) and mor-
phisms g : c1 → c2, h : c2 → c3, we have F (h ◦ g) = F (h) ◦ F (g).

Just like how Group Theory allows us to make generalizations about shared properties between
various groups, we can prove statements at the category level and apply them to the structures
that they generalize. Now that we’ve defined Groups in Category Theory terms, we can prove
properties about Groups. If we think of groups as categories, a group homomorphism is a functor
between groups. We will look at a simple example of how we can use category theory results to
prove some properties of groups.

Definition 5.2 Given monoids M1, M2, we define a homomorphism as a functor f : M1 →M2

such that the following are satisfied:

1. f(m ◦ n) = f(m) ◦ f(n) for any m,n ∈ Hom(M1)

2. f(eM1) = eM2, where eM1 is the identity element of M1 and eM2 is the identity element of
M2.

Proposition 5.3 A homomorphism between monoids preserves inverses: Let f : M1 →M2 be the
homomorphism between monoids M1 and M2. Then, f(x−1) = f(x)−1for all x ∈M1.

Since inverses of elements in monoids are unique (proof is left as an exercise to the reader), we
have:

f(eM1) = f(x ◦ x−1) = f(x) ◦ f(x−1) = eM2

f(x)−1 ◦ f(x) ◦ f(x−1) = f(x)−1 ◦ eM2

f(x−1) = f(x)−1 for all x ∈M1

Therefore homomorphisms between monoids preserve inverses. �

Recall that the elements in any group can be represented as the set of morphisms of a monoid.
This implies that group homomorphisms also preserve inverses. So, we’ve proved something about
groups without actually doing anything with groups. While this proof using category theory is
basically the same as the group theory proof, it applies to a wider range of structures. In other
words, if we only wanted to prove this for groups, then it doesn’t matter which way we prove it,
but if we want to prove that this result holds true for other structures, then it makes sense to work
with categories.

5

5.1 Opposite Functor

Before we define what an opposite functor is, we first must define what an opposite category is.

Definition 5.4 Let C be a category. The opposite category, Cop of C is the category generated
by reversing each morphism in C.

The opposite functor is simply the functor between two opposite categories:

Definition 5.5 Given categories C, D, let F : C → D. The opposite functor is defined as
F op : Cop → Dop.

5.2 Contravariant Functors

A contravariant functor is similar to an inverse of a covariant functor. Contravariant functors
are covariant functors on the opposite category. So, for categories C and D, if F : C → D is a
contravariant functor, then F : Cop → D is a covariant functor.

For example, Hom-sets are sets of morphisms between objects, and hom-functors define mappings
between Hom-sets. One type of hom-functor, Hom(−, A), is a contravariant functor:

Definition 5.6 Let A be a locally small category 1 and A ∈ Ob(A). We define a functor HA =
Hom(−, A): Aop → Set, such that the following hold:

1. For any object B ∈ A, HA(B) = Hom(B,A).

2. For a morphism g ∈ HomA(B′, B), we have HA(g) = Hom(g,A) = g∗, where g∗ is the
function that when composed with g, defines the mapping − ◦ g : Hom(B,A)→ Hom(B′, A)
by sending h : B → A to h ◦ g.

The “-” means “insert an object from the category in this spot”, so Hom(−, B) contains mappings
between any object c ∈ Ob(C) and the set of morphisms, Hom(c,B).

5.3 Diagrams

We can use diagrams for definitions and visual proofs. We say that a category diagram commutes
if, for any two directed paths between two nodes, the composite arrow along the first path is equal
to the composite arrow along the second path.

1A locally small category is defined as a category C in which HomC(a, b) for a, b ∈ C is a small set and not a
proper class.

6

Definition 5.7 For categories A,B, let’s define functors F : A → B and G : A → B. A natural
transformation is a family of mappings α : F → G such that αA : F (A) → G(A) for A ∈ A such
that, for every morphism f : A → A′ (where A,A′ ∈ A), the following diagram commutes (Image
source: page 27 of [Lei16]):

The mappings αA are called the components of α.

6 The Yoneda Lemma

Definition 6.1 Let A be a locally small category. The Yoneda embedding of A is the functor
H• : A→ [Aop,Set] such that for every object A ∈ Ob(A), H•(A) = HA : Aop → Set.

Let’s consider another functor X : Aop → Set. An interesting question to ask is, how can we
relate HA to X? A relation between HA and X is a relation between functors, so it is a natural
transformation.

Proposition 6.2 We define the set of natural transformations between HA and X as Nat(HA, X).
The Yoneda Lemma states that this set of natural transformations is isomorphic to the set X(A).
In other words,

Nat(HA, X) ∼= X(A)

Why does this work? We need to show that, for any functor X : Aop → Set and any object A ∈ A,
there exists a bijection between the sets Nat(HA, X) and X(A). This is because, for sets, bijections
and isomorphisms are the same.
For any element A ∈ A and functor X ∈ [Aop,Set], we define functions (ˆ) and (˜) such that:

We now need to define (ˆ) and (˜) and show that (ˆ̃) and (˜̂) are identities:

1. Given α ∈ X(A), we can define α̂ ∈ X(A) by α̂ = αA(idA).

2. Given x ∈ X(A), we can must a natural transformation x̃ : HA → X. So, for any object
B ∈ A, we have x̃B : HA(B) → X(B), where HA(B) = HomA(B,A). We can define a
mapping between morphisms for f ∈ HomA(B,A) as x̃B(f) =

(
X(f)

)
(x) ∈ X(B).

7

3. To show that (ˆ̃) is an identity, we need to show that ˆ̃x = x, as this indicates that applying
both functions to x negates their effect on x.

ˆ̃x = x̃A(idA) by our definition of x̂

=
(
X(idA

)
(x) by our definition of x̃

= idX(A)(x)

= x

4. Finally, to show that (˜̂) is an identity, we need to show that ˜̂α = α. This is a bit more
complicated to show, so we shall skip the proof. (See page 97 of [Lei16]).

We’ve shown that, for any functor X : Aop → Set and any object A ∈ A, there exists a bijection
between the sets Nat(HA, X) and X(A), thus the sets are isomorphic. �

6.1 Cayley’s Theorem

Remember Cayley’s Theorem from group theory? Since the Yoneda Lemma generalizes this, we
can use the Yoneda Lemma to prove this result2. Recall that we can define groups in terms of
categories - a group G is the set of all morphisms of a monoid M that is also a groupoid. Since a
monoid only has one object, all of the morphisms map that object to itself, so they are all identity
morphisms: idA : A → A for all idAi ∈ G where Ob(M) = {A}. All of these morphisms are
isomorphisms.

Back to Yoneda’s Lemma, we have

Nat(HA, X) ∼= X(A)

Since both X and HA are functors from Aop → Set, we can let X = HA:

Nat(HA, HA) ∼= HA(A)

First, HA(A) simply the set of all morphisms from A to itself - sounds familiar? That’s because the
set of all morphisms from an object A to itself form a group! This means that HA(A) = HA = G,
so we can replace HA(A) with G.

Now, what about Nat(HA, HA)? Well, Nat(HA, HA) is the set of mappings from HA to itself.
We’ve established that HA is equivalent to G, so we can think of Nat(HA, HA) as the set of
morphisms from G to G. More precisely, since all morphisms that are elements in a group are
isomorphisms, Nat(HA, HA) is the set of isomorphisms from G to G, which is equal to the set of
automorphisms of G! 3

So, in group theory terms, the Yoneda Lemma states that the set of automorphisms of G is isomor-
phic to G. Equivalently, Aut(G) ∼= G. It turns out that Aut(G) is a group and Aut(G) is always a
subgroup of the group of all permutations of G. Let’s prove this:

Proposition 6.3 Aut(G) is a group.

1. IDENTITY: The identity map idG is an automorphism.

2There are some corollaries of the Yoneda Lemma which are more closely related to Cayley’s Theorem, but to
avoid complicating things further by discussing them here, we will only use the Yoneda Lemma.

3I adapted this justification from [Bra17].

8

2. CLOSURE: The composition of two automorphisms is an automorphism. Let f, g ∈ Aut(G)
and h = f ◦ g. For any x, y ∈ G, we have:

h(xy) = f(g(xy))

= f(g(x)g(y))

= f(g(x))f(g(y)) = h(x)h(y)

We know that h must be an automorphism because h is a bijection and we just showed that
h is a homomorphism.

3. ASSOCIATIVITY: We want to show that h ◦ (g ◦ f) = (h ◦ g) ◦ f . For any x ∈ G, we have:(
h ◦ (g ◦ f)

)
(x) = h(x)

(
(g ◦ f)(x)

)
= h(x)g(x)f(x)

=
(
h ◦ g)(x)

)
f(x) =

(
(h ◦ g) ◦ f

)
(x)

4. INVERSES: For f ∈ Aut(G), f is a group isomorphism from G to itself. Because f is an
isomorphism, there must exist unique elements x1, x2, y1, y2, . . . ∈ G such that f(x2) = x1
and f(y2) = y1, and vice versa. This means that there must exist another automorphism f−1

that sends x1 to x2, y1 to y2, and so on. Thus, each element of Aut(G) has an inverse.

Thus, Aut(G) is a group. �

Proposition 6.4 Aut(G) is a subgroup of Sn.

Each automorphism f ∈ Aut(G) permutes the elements in G, thus it is an element in the symmetric
group acting on G, so Aut(G) ⊆ Sym(G). We just proved that Aut(G) is indeed a group, and
Aut(G) ⊆ Sym(G), thus Aut(G) is a subgroup of Sym(G). We know that Sym(G) is isomorphic to
Sym({1, 2, . . . , n}), where n = |G|, which is equivalent to the symmetric group Sn, thus Sym(G) ∼=
Sn. Since Aut(G) is a subgroup of Sym(G) and Sym(G) is isomorphic to Sn, we have shown that
Aut(G) is isomorphic to a subgroup of the symmetric group.�

Theorem 6.5 (Cayley’s Theorem) Any finite group G is isomorphic to a subgroup of Sn.

By the Yoneda Lemma, the set Aut(G) is isomorphic to the set of elements in G (which form
a group, by definition). We’ve proved that Aut(G) is a group, and Aut(G) is isomorphic to a
subgroup of the symmetric group. Putting this together, we have proved that G is isomorphic to
a subgroup of the symmetric group. �

References

[Awo11] Steve Awodey. Category Theory. Oxford University Press, 2011.

[Bra17] Tai-Danae Bradley. The yoneda lemma, 2017.

[Lei16] Tom Leinster. Basic category theory, 2016, 1612.09375.

[Mar20] Jean-Pierre Marquis. Category theory. In Edward N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2020
edition, 2020.

9

	Introduction
	Definition of Category
	Diagram Notation

	More about Morphisms
	Types of Categories
	Direct Product of Categories
	Functors
	Opposite Functor
	Contravariant Functors
	Diagrams

	The Yoneda Lemma
	Cayley's Theorem

