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Abstract. Lie theory was developed by mathematician Sophus Lie in the late 19th century.
In essence it rests on the theory of continuous groups or groups with a continuous operation.
In this paper, we will introduce some preliminary knowledge about manifolds in the first
section of this paper, and then specifically discuss Lie groups emerged from it.

1. A Brief Introduction to Manifolds

Surface, one of the oldest objects geometricians have been studying, can be called a 2d
manifold in the field of modern differential geometry. But, what is a manifold?

A manifold is a topological space that is “locally” resembles the Euclidean space (Rn).
One way to think of it is by taking a geometric object from Rk and trying to “fit” it into
Rn, n > k.

Of course, there is a precise definition of the manifold in topology—a manifold is defined
as a set that is homeomorphic to Euclidean space. A homeomorphism is a continuous one-
to-one mapping that preserves topological properties.

Figure 1. Calabi-Yau Manifold.

Figure 1 is an illustration the Calabi-Yau Manifold. We can observe that each point on
this “surface” looks like (or homeomorphic to) a R2 space, but in fact, this kind of manifold
holds much more sophisticated algebraic properties which we will not discuss here.

Let us now take a look at the formal formal definition of a topological manifold.

Definition 1.1. An n-dimensional topological manifold M is a topological Hausdorff space
with a countable base which is locally homeomorphic to Rn. This means that for every point
p in M there is an open neighbourhood U of p and a homeomorphism ϕ : U → V which
maps the set U onto an open set V ⊂ Rn. Additionally:
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• The mapping ϕ : U → V is called a chart or coordinate system.
• The set U is the domain or local coordinate neighbuorhood of the chart.
• The image of the point p ∈ U, denoted by ϕ(p) ∈ Rn, is called the coordinates or
local coordinates of p in the chart.

• A set of charts, {ϕα|α ∈ N}, with domains Uα is called the atlas of M , if
!

α∈N Uα =
M .

This definition can be difficult to understand since many necessary related definitions have
not been introduced. We will not be focusing on the topology in this paper, so that is not
essential to our discussion. Let us take a look at this figure below to clarify some ideas.

Figure 2. Two intersecting patches (green and purple with cyan/teal as the
intersection) on a manifold with different charts (continuous 1-1 mappings)
to Rn Euclidean space. Notice that the intersection of the patches have a
smooth 1-1 mapping in Rn Euclidean space, making it a differential manifold.

Figure 2 also has another mapping between the intersecting parts of Uα and Uβ in their
respective chart coordinates called a transition map, given by ϕαβ = ϕβ ◦ ϕ−1

α and φβα =
ϕα ◦ ϕ−1

β (their domain is restricted to either ϕα (Uα ∩ Uβ) or ϕβ (Uα ∩ Uβ) , respectively.
These transition functions are vital because depending on their differentiability, they define

a new class of differentiable manifolds (denoted by Ck if they are k-times continuously
differentiable). The most important one is infinitely differentiable, which is called smooth
manifolds.

To actually calculate things such as distance on a manifold, we have to introduce few
indispensable concepts: the first one is the tangent space TxM of a manifold M at a point x.
Imagine you are walking along a curve on a smooth manifold, as you pass through the point
x you implicitly have velocity (magnitude and direction) that is tangent to the manifold,
in other words, a tangent vector. The tangent vectors made in this way from each possible
curve passing through point x make up the tangent space at x. For a 2d manifold (embedded
in 3d), this would be a plane. Figure 3 shows a visualization of this on a manifold.

Those tangent vectors are “velocities” on a manifold, telling us how they “move”. How-
ever, they are somehow confined in a local coordinate system. To address this, we need to
understand what basis is, which is the second indispensable Recall that a vector has its own
coordinates that correspond to particular basis vectors. This is important because we want
to be able to do analysis on the manifold between points and charts, not just at a single
point/chart. So understanding how the tangent spaces relate between different points (and
potentially charts) on a manifold is important.

To understand how to construct the tangent space basis, let’s first define an arbitrary
function f : M → R and assume we still have our good old smooth parametric curve



A GENTLE INTRODUCTION TO LIE GROUPS 3

Figure 3. A tangent space TxM for manifold M with tangent vector
v ∈ TxM, along a curve traveling through x ∈ M .

γ : t → M. Now we want to look at a new definition of ”velocity” relative to this test

function: df◦(t)
dt

"""
t=t0

at our point on the manifold p. Basically the rate of change of our

function f as we walk along this curve.
However, we can do a “trick” by introducing a chart (ϕ) and its inverse (ϕ−1) into this

measure of “velocity”:

df ◦ γ(t)
dt

""""
t=t0

=
d (f ◦ ϕ−1 ◦ ϕ ◦ γ) (t)

dt

""""
t=t0

=
d ((f ◦ ϕ−1) ◦ (ϕ ◦ γ)) (t)

dt

""""
t=t0

=
#

i

∂ (f ◦ ϕ−1) (x)

∂xi

"""""
x=ϕoγ(t0)

d(ϕ ◦ γ)i(t)
dt

""""""
t=t0

=
#

i

∂ (f ◦ ϕ−1) (x)

∂xi

"""""
x=ϕ(p)

d(ϕ ◦ γ)i(t)
dt

""""""
t=t0

=
#

i

(basis for component i).

Note that the third line is just an application of the multi-variable calculus chain rule.
We’re going to take the basis and re-write it:

$
∂

∂xi

%

p

(f) :=
∂ (f ◦ ϕ−1) (ϕ(p))

∂xi

,

which simply defines some new notation for the basis. There is a convention that ϕ is
implicitly specified by xi. So if we have some other chart, say, ϑ, then we label its local
coordinates with yi. But it’s important to remember that when we’re using this notation
implicitly there is a chart behind it.

There’s another thing we need to look at: what is f ? We know it’s some test function
that we used, but it was arbitrary. And in fact, it’s so arbitrary we’re going to get rid of it!
So we’re just going to define the basis in terms of the operator that acts of f and not the
actual resultant vector! So every tangent vector v ∈ TpM, we have:
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v =
n#

i=1

v
&
xi
'
·
$

∂

∂xi

%

p

=
n#

i=1

d(ϕ ◦ γ)i(t)
dt

"""""
t=t0

·
$

∂

∂xi

%

p

,

which suggest the basis is actually a set of differential operators.

2. Transition to Lie Groups

In this section we will precisely define Lie groups, and Lie algebras. One of the reasons
that Lie groups are nice is that they have a differential structure (or C∞), which means that
the notion of tangent space makes sense at any point of the group.

There are numerous theorems, lemmas, and propositions in Lie groups. To have a overall
look of what Lie groups and Lie algebra are, we will introduce some of them without proofs,
as they are too advanced for this introductory article.

First, we will introduce the smooth manifold.
The intuition behind the notion of a smooth manifold in RN is that a subspace M is a

manifold of dimension m if every point p ∈ M is contained in some open subset U of M (in
the subspace topology that can be parametrized by some function ϕ : Ω → U from some
open subset Ω in Rm containing the origin, and that ϕ has some nice properties that allow
the definition of smooth functions on M and of the tangent space at p. For this, ϕ has to
be at least a homeomorphism, but more is needed: ϕ must be smooth, and the derivative
ϕ′ (0m) at the origin must be injective (letting 0m = (0, . . . , 0)( )* +

m

).

Definition 2.1. Given any integers N,m, with N ≥ m ≥ 1, an m-dimensional smooth
manifold in RN , for short a manifold, is a nonempty subset M of RN such that for every
point p ∈ M there are two open subsets Ω ⊆ Rm and U ⊆ M, with p ∈ U, and a smooth
function ϕ : Ω → RN such that ϕ is a homeomorphism between Ω and U = ϕ(Ω), and ϕ′ (t0)
is injective, where t0 = ϕ−1(p); see Figure 4.1. The function ϕ : Ω → U is called a (local)
parametrization of M at p. If 0m ∈ Ω and ϕ (0m) = p, we say that ϕ : Ω → U is centered at
p.

Figure 4. A manifold in RN .

Notice that EN and Em refer to Euclidean spaces.
Saying that ϕ′ (t0) is injective is equivalent to saying that ϕ is an immersion at t0. Recall

that M ⊆ RN is a topological space under the subspace topology, and U is some open subset
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of M in the subspace topology, which means that U = M ∩ W for some open subset W
of RN . since ϕ : Ω → U is a homeomorphism, it has an inverse ϕ−1 : U → Ω that is also
a homeomorphism, called a (local) chart. since Ω ⊆ Rm, for every point p ∈ M and every
parametrization ϕ : Ω → U of M at p, we have ϕ−1(p) = (z1, . . . , zm) for some zi ∈ R and
we call z1, . . . , zm the local coordinates of p (w.r.t. ϕ−1) . We often refer to a manifold M
without explicitly specifying its dimension (the integer m ).

In order to have transit to Lie algebra, let’s now rigorously define some terms as to
manifolds.

Lemma 2.2. Given an m-dimensional manifold M in RN , for every p ∈ M there are
two open sets O,W ⊆ RN with 0N ∈ O and p ∈ M ∩ W , and a smooth diffeomorphism
ϕ : O → W, such that ϕ (0N) = p and

ϕ (O ∩ (Rm × {0N−m})) = M ∩W.

There is an open subset Ω of Rm such that

O ∩ (Rm × {0N−m}) = Ω× {0N−m} ,
and the map ψ : Ω → RN given by

ψ(x) = ϕ (x, 0N−m)

is an immersion and a homeomorphism onto U = W ∩M ; so ψ is a parametrization of M at
p. We can think of ϕ as a promoted version of ψ which is actually a diffeomorphism between
open subsets of RN ; see Figure 5.

Figure 5. An illustration of Lemma 2.2, where M is a surface embedded in
R3, namel m = 2 and N = 3.

Proposition 2.3. A subset M ⊆ Rm+k is an m-dimensional manifold iff either

(1) For every p ∈ M, there is some open subset W ⊆ Rm+k with p ∈ W, and a (smooth)
submersion f : W → Rk, so that W ∩M = f−1(0),

or
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(2) For every p ∈ M, there is some open subset W ⊆ Rm+k with p ∈ W, and a (smooth)
map f : W → Rk, so that f ′(p) is surjective and W ∩M = f−1(0).

Figure 6. An illustration of parameterization and transition functions.

Now, we will start introducing some linear Lie groups. Let us begin with reviewing the
definition of a group.

Definition 2.4. A group is a set G together with a binary operation · : G×G → G (meaning
that for any g, h ∈ G, we have a well-defined element g·h ∈ G, sometimes also simply written gh),
with the following properties:

• There is an element e ∈ G so that eg = ge = g for all g ∈ G We call e an identity
element of G.

• If g, h, k ∈ G, then g(hk) = (gh)k (associativity).
• For every g ∈ G, there is some element h ∈ G so that gh = hg = e. We call h an
inverse of g.

And here is the definition for the Lie group.

Definition 2.5. A Lie group is a nonempty subset G of RN(N ≥ 1) satisfying the following
conditions:

• G is a group.
• G is a manifold in RN

• The group operation · : G×G → G and the inverse map −1 : G → G are smooth.
(Smooth maps are defined in Definition 4.8 ). It is immediately verified that

GL(n,R) is a Lie group. since all the Lie groups that we are considering are subgroups
of GL(n,R), the following definition is in order.

Definition 2.6. A linear Lie group is a subgroup G of GL(n,R) (for some n ≥ 1 ) which is

a smooth manifold in Rn2

Let Mn(R) denote the set of all real n × n matrices (invertible or not). If we recall that
the exponential map

exp : A )→ eA

is well defined on Mn(R), we have the following crucial theorem due to Von Neumann and
Cartan.
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Theorem 2.7. (Von Neumann and Cartan, 1927) A closed subgroup G of GL( n, R) is a
linear Lie group. Furthermore, the set g defined such that

g =
,
X ∈ Mn(R)|etX ∈ G for all t ∈ R

-

is a nontrivial vector space equal to the tangent space TIG at the identity I, and g is closed
under the Lie bracket [−,−] defined such that [A,B] = AB − BA for all A,B ∈ Mn(R).

Theorem 2.7 applies even when G is a discrete subgroup, but in this case, g is trivial (i.e.,
g = {0} ). For example, the set of nonnull reals R∗ = R − {0} = GL(1,R) is a Lie group
under multiplication, and the subgroup

H = {2n|n ∈ Z}

is a discrete subgroup of R∗. Thus, H is a Lie group. On the other hand, the set Q∗ = Q−{0}
of nonnull rational numbers is a multiplicative subgroup of R∗, but it is not closed, since Q
is dense in R. Hence Q∗ is not a Lie subgroup of GL(1,R).

The first step in proving Theorem 2.7is to show that if G is a closed and nondiscrete
subgroup of GL(n,R) and if we define g just as TIG (even though we don’t know yet that
G is a manifold), then g is a vector space satisfying the properties of Theorem 2.7.

Proposition 2.8. Given any closed subgroup G in GL(n,R), the set

g =
,
X ∈ Mn(R)|X = γ′(0), γ : J → G is a C1 curve in Mn(R) such that γ(0) = I

-

satisfies the following properties:

• g is a vector subspace of Mn(R).
• For every X ∈ Mn(R), we have X ∈ g iff etX ∈ G for all t ∈ R.
• For every X ∈ g and for every g ∈ G, we have gXg−1 ∈ g.
• g is closed under the Lie bracket.

Proposition 2.9. Let G be a subgroup of GL(n,R), and assume that G is closed and not
discrete. Then dim(g) ≥ 1, and the exponential map is a diffeomorphism of a neighborhood
of 0 in g onto a neighborhood of I in G. Furthermore, there is an open subset Ω ⊆ Mn(R)
with 0 ∈ Ω, an open subset W ⊆ GL(n,R) with I ∈ W, and a diffeomorphism Φ : Ω → W
such that

Φ(Ω ∩ g) = W ∩G.

3. Summary

In this paper we have introduced the concepts of manifold and Lie groups through a
gentle introduction and rigorous explanations. Lie groups are remarkably important in
both differential geometry and algebra, as it possesses properties of manifolds, which is the
cornerstone of differential geometry. We have given several germane definitions, theorems,
lemmas, and propositions in the second portion of this paper, for compactness, without
proofs. However, it is also important to learn those proofs, if one wants to understand
how those theorems are proved with the language of Lie groups and differential geometry
completely. I highly recommend reading Differential Geometry and Lie Groups — A
Computational Perspective by Jean Gallier and Jocelyn Quaintance as an excellent material
to study Lie groups and some intersection with differential geometry, to learn the profound
meaning of Lie’s theory.
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