PROOF THAT SOME PROJECTIVE SPECIAL LINEAR GROUPS ARE
SIMPLE

ALEX THOLEN

1. WHAT ARE PSL’s?

Projective special linear groups are one family of infinite simple groups. What are projec-
tive special linear groups, you may ask?

Definition 1.1. The special linear group SL,,(F) is the set of nxn matrices with determinant
1 of the field F.

Definition 1.2. The projective special linear group PSL, (F') is the quotient group of SL,,(F)
by its center: PSL,(f) = SL,(F)/Z(SL,(F))

In case you have forgotten, the center of a group is defined as follows:

Definition 1.3. The center of a group G is the is the set of elements Z(G) that commute
with every element of G, i.e.

Z(G) ={h € G:gh=hg for all g € G}.
2. NECESSARY STEPS

Now, to prove that most projective special linear groups are simple, we will use double
transitivity.

Definition 2.1. An action of a group G on a set X is called transitive when it has the
property where for any z,y € X there exists a ¢ € G such that g(x) = y. It is called doubly
transitive when for any x1, zo,y1,y» € X with distinct 2’s and y’s there exists a g € GG such

that g(x1) = y1, g(x2) = yo.

Theorem 2.2. If G acts doubly transitively on X then the stabilizer subgroup of any point
in X 1s a maximal subgroup of G.

Proof. Pick x € X and let H, = Stab,. The first step is to show that for any g ¢ H,,
G =H,UH,gH,. We have ¢ € G and ¢’ ¢ H,, and the goal is to show that ¢’ € H,gH,.
We know that gz and ¢’z aren’t x, and so via double transitivity we get that ¢’z = z and
g"(gx) = ¢’z for some ¢” € G. We know that ¢” € H, and so [ |

Theorem 2.3. Suppose G acts doubly transitively on a set X. Any normal subgroup N >G
acts on X either trivially or transitively.

Proof. Suppose N does not act trivially: nx # x for some x € X and some n # 1 in N. Pick
any y and ¢’ in X with y # /. By double transitivity, there is ¢ € G such that gz = y and
g(ny) = y'. Then ¢/ = (gng ')(gz) = (gng ')y and gng~' € N, so N acts transitively on
X. [
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Theorem 2.4. (lwasawa). Let G act doubly transitively on a set X. Assume the following:
(1) For some x € X the group Stab, has an abelian normal subgroup whose conjugate
subgroups generate G.
(2) [G,G] =G.
Then G/K 1is a simple group, where K is the kernel of the action of G on X.

Proof. To show G/K is simple we will show the only normal subgroups of G lying between
K and GG are K and G. Let K C N C G with N> . Let H = Stab,, so H is a maximal
subgroup of G. Sinec N is normal, NH = {nh : n € N,h € H} is a subgroup of G, and
it contains H, so by maximality either NH = H or NH = G. And so N acts trivially
or transitively on X. If NH = H then N C H, so N firxes x. Therefore N does not act
transitively on X so N must act trivially on X, which implies N C K. Since K C N by
hypothesis, we have N = K. Now suppose NH = (. Let U be the abelian normal subgroup
of H in the hypothesis: its conjugate subgroups generate GG. Since U H, NU> NH = G.
Then for g € G,gUg™" C g(NU)g~! = NU, which shows that NU contains all the conjugate
subgroups of U. By hypothesis it follows that NU = G. Thus G/N = (NU)/N =~ U/(NNU).
Since U is abelian, the isomorphism tells us that G/N is abelian, so [G,G] C N. Since
G = |G, G] by hypothesis, we have N = G. [

3. Is PSLy(F)simple?
Theorem 3.1. The action of SLo(F) on the linear subspaces of F?* is doubly transitive.

Proof. An obvious pair of distinct linear subspaces in F? is F' (é) and F ((1)) It suffices to show
that, given any two distinct linear subspaces F, and F,,, there is an A € SLy(F') that sends
F(é) to F, and F((l)) to F,, because we can then use F((l)) and F((l)) as an intermediate step
to send any pair of distinct linear subspaces to any other pair of distinct linear subspaces.
Let v = (Z) and w = (Z) Since F, # F,,, the vectors v and w are linearly independent, so

D := adbc is nonzero. Let A = (Z‘g?g), which has determinant a(d/D)(b/D)c = D/D = 1,

so A € SLy(F). Since A((l]) = () =vand A()) = (Zg) = (1/D)w, A sends F(é) to F'v and

F()) to F(1/D)w = Fuw. |

We will apply Iwasawa’s criterion (??wasawa) to SLy(F') acting on the set of linear sub-
spaces of F2. This action is doubly transitive by the previous theorem. It remains to check
the following;:

e the kernel K of this group is the center of SLy(F'), so SLy(F)/K = PSLy(F),
e the stabilizer subgroup of ((1)) contains an abelian normal subgroup whose conjugate
subgroups generate SLy(F'),[SLa(F'), SLy(F')] = SLao(F).

Theorem 3.2. The kernel of the action of SLy(F) on the linear subspaces of F? is the center

ab

Proof. A matrix ( cd

) € SLy(F) is in the kernel K of the action when it sends each linear

subspace of F2 back to itself. If the matrix preserves the lines F < (1) ) and F < (1) ) then

a O

c:()andb:(),so(ab):<a)'ThedeterminantiS1’SOd:1/a'If<0 1/a

cd 0
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preserves the line F( 1 ) then a = 1/a, so a = *1. This means < zz ) =+ ( (1) (1) ) '
0

Conversely, the matrices + (1) 1 both act trivially on the linear subspaces of F2, so

K = {j: ( é (1) )} If a matrix ( Zz ) is in the center of SLy(F) then it commutes with

11 10 T ab
( 01 ) and ( 11 ) , which implies ¢ = d and b = ¢ (check!). Therefore ( cd ) =

a 1
0 | . since this has determinant 1 a®> = 1, so a = £1. Conversely, = [ 0 | commutes
a 1

with all matrices. Let z = F' < é ) . Its stabilizer subgroup in SLy(F) is

StabF(l):{AGSLQ(F):A(é)EF((1)>}
:{(8 Z)GSLZ(F)}
{3 1) oo

This subgroup has a normal subgroup

{0 {0 7) rerd
st bt e (3 2 (3 4) = {( ) iner).

[ |

Theorem 3.3. The subgroup U and its conjugates generate SLy(F'). More precisely, any

matrix of the form < 1 (1) ) 1s conjugate to a matrix of the form ( , and every
1

element of SLy(F) is the product of at most 4 elements of the form ( (1) ) or ( * )

(0 1. . 0 -1\ (1A
Proof. Thernatmx(1 0 )ISIDSLZ(F)and<1 0 )(O 1)( ) (
1 1
>or

i)

)

— O >/’—‘
N——

S1o) < (1) _01 ) conjugates U = { 0 1 } to the group of lower triangular matrices {

—

HO/\\

Pick CCL Z > in SLo(F). To show that it is a product of matrices of type ( L

( (1) T ) , first suppose b # 0. Then

(e 8)=Caup 1) (o 1) Caum 1)
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(29)-(2 =) (E ) ()

If b= c = 0 then the matrix is [ 0 , and
0 1/a

(3 1%):((1_1@)/@ ?)(é ”(ail (1)><é _11/a)

So far F' has been any field. Now we specify #F > 4.
Theorem 3.4. If #F > 4 then [SLa(F'), SLy(F)] = SLo(F')

a 0 16N/ a 0\ (1 b\
Proof. We compute an explicit commutator: ( 0 1/a ) ( 01 ) ( 0 1/a ) ( 0 1 ) =

2 _
( (1) b(a 1 b > Since #F > 4, there is an a # 0,1, or -1 in F, so a® # 1. Using this value

of a and letting b run over F' shows [SLy(F"), SLo(F')] contains U. Since the commutator sub-
group is normal, it contains every subgroup conjugate to U, so [SLa(F),SLy(F')] = SLo(F)
by u

is false when #F = 2 or 3 : SLy (Fy) = GLs (F3) is isomorphic to S5 and S3, 3] = As.
In SLs (F3) there is a unique 2 -Sylow subgroup, so it is normal, and its index is 3, so the
quotient by it is abelian. Therefore the commutator subgroup of SLs (F3) lies inside the 2
-Sylow subgroup (in fact, the commutator subgroup is the 2 -Sylow subgroup).

Theorem 3.5. If F' > 4 then the group PSLy(F') is simple.

If ¢ # 0 then

Proof. By the previous four theorems the action of SLy(F) on the linear subspaces of F?
satisfies the hypotheses of Iwasawa’s theorem, and its kernel is the center of SLy(F) n

This can be continued on to show for SL,(F) where n > 2, but that is beyond the scope
of this.

References:

Wikipedia - to obtain very basic information of what was needed (and to look at the
monster group)

https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf - main source.
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