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In this paper, we give a brief overview of finite fields. We first discuss
the properties of a polynomial intimately related with finite fields. We then
provide an abstract construction of finite fields, addressing their existence
and uniqueness, and finally present a more useful characterization. Most of
the material in this paper was adapted from [Con], with help from [For07]
and [Dub15] as well. The LATEX package used for this paper was taken from
Evan Chen, with minor edits by the author.

§1 Definitions and preliminary results

In any field F , we refer to its multiplicative group F \ {0} as F×. We also assume that
any irreducible polynomial is monic unless otherwise stated, and use the notation F for a
finite field.

Definition 1.1. The characteristic of a field F is the smallest natural number m such
that adding 1 m times gives the additive identity 0. If m doesn’t exist (i.e. the field is
infinite), then we say F has characteristic 0.

Proposition 1.2

The characteristic of a finite field F is a prime p, and furthermore there does not
exist any other primes q such that 1 + 1 + . . .+ 1︸ ︷︷ ︸

q ones

= 0.

Proof. Suppose that p can be expressed as ab with a, b ∈ F. Then 0 = p = ab, but since
the multiplicative group F× is closed, ab must be in this group and thus cannot be 0,
contradiction, so p is prime. By definition q must be greater than p, but this contradicts
our assumption that p = q = 0.

Theorem 1.3 (Unique Factorization)

Over a field F , any monic polynomial f(x) can uniquely be expressed in the form

f(x) =
k∏
i=1

di(x)

up to the order of the factors, where d1, d2, . . . , dk are irreducible polynomials.
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Proof. We use strong induction on the degree of the polynomial. Clearly all monic
polynomials with degree 0 and 1 are irreducible, so suppose that all monic polynomials
with a degree that is a positive integer less than some positive integer n have unique
factorizations. If a monic polynomial f with degree n is irreducible, we’re done, but
otherwise f must be able to be split into two monic polynomials g, h of smaller degree
such that f(x) = g(x) · h(x). But by the induction hypothesis g and h both have unique
factorizations, so f does too.

Theorem 1.4 (Classification of finite fields of prime order)

For a prime p, any field F of size p is isomorphic to the field Z/pZ.

Proof. First we’ll show that Z/pZ is a field. We’ll only check that all elements have
multiplicative inverses since the other field axioms follow from the fact that Z is a ring. By
Bézout’s Identity, for any element a ∈ Z/pZ, there exists x, y ∈ Z such that ax+ py = 1,
so taking modulo p on both sides implies that the remainder of x upon division by p is
the multiplicative inverse of a. Now we’ll show the isomorphism. It suffices to show that
the additive group F is isomorphic to Z/pZ, but this follows from Lagrange since the
order of any non-identity element of F must divide p and thus generates it.

From here on out we let Fp denote the field with p elements, since there is only one up
to isomorphism.

Theorem 1.5 (Order of Finite Fields)

The order of a finite field F is pn for some prime p and positive integer n.

Proof. Suppose that two primes p and q divide the order of F. By Cauchy’s Theorem,
there must exist elements of order p, q in the additive group F, but this would require
that p = q = 0, contradiction.

Definition 1.6. A primitive element, or a multiplicative generator, of a finite
field F of size pn is an element with multiplicative order pn − 1.

Lemma 1.7

Let F be a finite field with order pn for prime p and positive integral n. Then F× is
cyclic, or in other words, there always exists a primitive element.

Proof. Let S ≤ F be the cyclic subgroup of a given order d, which we know must be unique
because there are at most d solutions to the equation xd − 1 = 0 by the Fundamental
Theorem of Algebra. Suppose that S is generated by a ∈ S, so all of its elements are
of the form ai for some 0 ≤ i < d. Then ai has order d if and only if gcd(i, d) = 1,

because otherwise we would have (ai)
d

gcd(d,i) = 1, and clearly d
gcd(d,i) is strictly less than d.

Thus, if φ is the Euler Totient Function, there are φ(d) elements in S with order d, and
d always divides pn − 1 = |F | by Lagrange’s Theorem, but it’s a well-known result in
number theory that pn − 1 =

∑
d|pn−1 φ(d), so no d can be left out1. Thus, there exists

1Another way to see that the function σ(d) counting the number of elements with order d must be the
same as φ(d) is through the Möbius Inversion Formula, as outlined in [Dub15].
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exactly φ(pn − 1) elements of order pn − 1, but φ(pn − 1) ≥ 1, since φ always counts 1,
so it follows that there must be at least one primitive element.

§2 The polynomial xp
n − x

We first look at the factorization of a very special polynomial that will be instrumental
in both of our characterizations.

Theorem 2.1 (Factorization of xp
n − x)

If F is a finite field with size pn, xp
n − x can be represented as the product of all

minimal polynomials of elements in F over Fp.

Proof. Suppose that a is a nonzero element of F. By Lagrange’s Theorem, the order
of a must divide pn − 1 since the cyclic group generated by a under multiplication is
a subgroup of F×. Thus, ap

n
= a for all a ∈ F and as a result the polynomial xp

n − x
factors as

xp
n − x =

∏
a∈F

(x− a).

However, xp
n −x is also a polynomial with coefficients in Fp, a field, so xp

n −x factorizes
uniquely into a product of polynomials irreducible over Fp[x] as well. But these irreducible
polynomials are contained in F[x], so by unique factorization applied again they must all
be reducible into a product of degree 1 monic polynomials in order to match the earlier
factorization of xp

n − x we gave, meaning that these are exactly the minimal polynomials
of F over Fp. as desired.

Corollary 2.2

Any irreducible polynomial π(x) in Fp[x] divides xp
n − x if and only if its degree

divides n.

Proof. As we saw in theorem 1.5, F is an extension of Fp by Cauchy’s Theorem. Treating
F as a vector space over Fp, note that for any basis {e1, e2, . . . , ek} of F, all elements of
F by definition can be written uniquely as an expression of the form

e1f1 + e2f2 + · · ·+ ekfk, fi ∈ Fp .

There are p choices for each fi, so it follows that F must have pk elements, and therefore
k = n = dimFp(F) = [F : Fp]. By theorem 2.1, if π(x) divides xp

n − x, then it
must be the minimal polynomial of some element α ∈ F over Fp. By the Tower Law,
n = [F : F(α)][F(α) : Fp], which implies the “if” direction. For the “only if” direction,
let d be the degree of π, and let n = dk for some k ∈ Z. Any element a in the field
Fp[x]/(π(x)) is a power of a primitive element, so we must have ap

d
= a. In particular, x

is an element of Fp[x]/(π(x)), and we have

x ≡ xpd ≡ xp2d ≡ xp3d ≡ · · · ≡ xpkd (mod π(x))

by continuously raising both sides to the pdth power, whence π(x) | xpn−x as desired.

3



Albert Zhu (June 5, 2020) Finite Fields

§3 Finite fields as splitting fields

We present our first characterization of arbitrary finite fields, which turns out to suffice
for classification , though is not very useful in practice.

Theorem 3.1 (Splitting Field Construction)

For any prime p and positive integer n, there exists a finite field with pn elements.

Proof. Let F be a field extension of Fp over which xp
n − x splits completely (i.e. F

contains all of xp
n − x’s roots, but is not necessarily a splitting field). Since p ≡ 0

(mod p), we find that (xp
n −x)′ = pnxp

n−1− 1 = −1, so xp
n −x has no double roots over

F. In light of this, we will show that the subset S of F containing the pn distinct roots of
xp

n − x over F is a field, which will be our construction. Consider the map φ : F → F
given by φ(x) = xp

n
: by the Binomial Theorem,

(a+ b)p =

(
p

0

)
ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 · · ·+

(
p

p

)
bp = ap + bp

since p never appears in the denominators of any of the terms, meaning that the pth-
power map is a homomorphism. Composing this map n times then implies that φ is a
homomorphism as well, and its fixed points are just the elements of S, so S is a group
under addition modulo p. The other field axioms are easy to check, so we’re done.

Theorem 3.2 (Uniqueness)

For any prime p and positive integer n, there only exists one finite field with pn

elements up to isomorphism.

Proof. By theorem 3.1, any finite field with pn elements is a splitting field of xp
n − x

over Fp, but all splitting fields of a fixed polynomial over Fp are isomorphic, so we’re
done.

Corollary 3.3

For every d|n, there exists exactly one subfield Fd ⊆ F with pd elements.

Proof. By the Fundamental Theorem of Algebra, xp
d − x can have at most pd roots in

Fp, which means that there can only be at most one Fd. However, also observe that

d | n =⇒ pd − 1 | pn − 1 =⇒ xp
d−1 − 1 | xpn−1 − 1 =⇒ xp

d − x | xpn − x,

so xp
d − x must have pd distinct roots in F since xp

n − x does too, so there also exists at
least one Fd as desired.

§4 Finite fields as quotient rings

We first prove a counting lemma due to Gauss in order to make this construction
standalone from the previous one.
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Lemma 4.1 (Gauss)

The number of monic irreducible polynomials of degree n over a field F of size q is

1

n

∑
d|n

µ
(n
d

)
qd,

where µ is the Möbius function. In particular, this number is always positive when
q is prime, but can also be zero otherwise.

Proof 1 (Möbius Inversion Formula). Suppose that there are σ(n) irreducible polynomi-
als of degree n. First of all, observe that there are qn nth degree polynomials in F[x], so
associating every such polynomial to the term xn, we get the generating function

∞∑
n=0

qnxn =
1

1− qx
.

On the other hand, by unique factorization, we know that each polynomial f(x) can be
factored as

f(x) = f1(x)e1 · · · fr(x)er

for some r, where each of the fi are irreducible in F[x]. This means that f is associated
with the term xdeg(f1)e1+···+deg(fr)er , so

1

1− qx
=

∏
irreducible f(x)

(1 + xdeg(f) + x2 deg(f) + · · · )

=
∏

irreducible f(x)

1

1− xdeg(f)

=
∞∏
i=1

(1− xi)−σ(i).

Logarithmically differentiating, this becomes

q

1− qx
=

∞∑
i=1

iσ(i)xi−1

1− xi
=

∞∑
i=1

∑
d|i

dσ(d)xi−1,

which means that qn =
∑

d|n dσ(d). Applying the Möbius Inversion Formula then gives
the desired result.

Proof 2 (Principle of Inclusion-Exclusion, largely adapted from [CM11]). This proof as-
sumes the results of the previous construction, but is too beautiful not to include. Again
let σ(n) count the number of irreducible polynomials of degree n in F, and let

∑
sym

denote the symmetric sum going through all permutations of the dummy variable (for
example, for three variables a, b, c,

∑
sym ab = 2ab+ 2bc+ 2ca). In the case n = 1, there

are clearly just q monic polynomials in F[x] of degree 1, which matches our formula,
so suppose now that n > 1’s prime decomposition is pe11 p

e2
2 · · · perr . By theorem 2.1

and corollary 2.2, the roots of all irreducible polynomials of degree n in Fp[x] must be
contained in F, cannot be shared, and furthermore all have multiplicity 1. Therefore,
there are n roots for each irreducible polynomial, meaning that it suffices to find the
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number of roots across all irreducible polynomials of degree n. The set Rn consisting of
these roots can be defined as

Rn = {α ∈ F | [F(α) : Fp] = n}
= {α ∈ F | α is not contained in any proper subfield of F}
= {α ∈ F | α is not contained in any maximal proper subfield of F}

=
(
Fpn/p1 ∪Fpn/p2 ∪ · · · ∪ Fpn/pr

)C
,

so PIE implies that

σ(n) =
1

n
|Rn| =

1

n

(
pn −

∑
sym

p
n
p1 +

∑
sym

p
n

p1p2 −
∑
sym

p
n

p1p2p3 + · · ·+ (−1)rp
n

p1p2···pr

)
,

which becomes the desired result once we translate everything into the language of the
Möbius Function.

Remark 4.2. Of course, we can extend this result to count all irreducible polynomials,
not just monic ones, by multiplying our formula by q − 1 since any non-monic irreducible
polynomial can be expressed as ar(x) for some monic irreducible polynomial r(x) of the
same degree and nonzero a.

The next construction we provide is much more useful than theorem 3.1, and is the
one that is most commonly used.

Theorem 4.3 (Quotient Ring Construction)

For any prime p and positive integer n, there exists a finite field with pn elements.

Proof. Let π(x) be an irreducible polynomial with degree n in Fp[x]. Note that elements
of the quotient ring Fp[x]/(π(x)) are of the form an−1x

n−1 + an−1x
n−1 + · · ·+ a0, where

an−1, an−2, . . . , a0 ∈ Fp[x], so there are clearly pn of them since we have p choices for
each coefficient ai, of which there are a total of n. Thus, we now just need to check that
multiplicative inverses exist, since the rest of the field axioms are all given to us by the
ring axioms and aren’t hard to check either. We follow a very similar process to the one
we did in theorem 1.4. Let a(x) be an element of Fp[x]/(π(x)). By Bézout’s Identity,
there exists polynomials u(x), v(x) ∈ Q[x] such that a(x)u(x) + π(x)v(x) = 1. If k ∈ Z
is the largest common multiple of all the denominators of coefficients of u and v, then
multiplying by k on both sides results in a(x)u′(x) +π(x)v′(x) = k for u′(x), v′(x) ∈ Z[x],
and taking modulo π(x) on both sides gives

a(x)u′(x) = k′,

where k′ is the remainder of k upon dividing by p. But k′ has a multiplicative inverse
modulo p, so k′−1u′(x) is the multiplicative inverse of a(x).

Lemma 4.4

For any prime p and positive integer n, any field of size pn must be isomorphic to
one of the form Fp[x]/(π(x)), where π(x) is an irreducible polynomial over Fp[x].
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Proof 1. Let F and F′ be fields with pn elements and γ be a primitive element generating
F×. Then if π(x) is the minimal polynomial of γ over Fp, by theorem 2.1 there must also
exist a root γ′ of π(x) in F′ and furthermore γ′ is a primitive element generating F′×.
This means that both F and F′× are isomorphic to Fp[x]/(π(x)).

Proof 2 (First Isomorphism Theorem). Again, let F be a field with pn elements and γ
be a primitive element generating F×. Consider the ring homomorphism φ : Fp[x]→ F
given by φ(f(x)) = f(γ): since F = Fp(γ), it follows that the map is surjective, so
Fp[x]/ ker(φ) ∼= im(φ) = F. This implies that ker(φ) is a maximal ideal in Fp[x], so it
must be an ideal generated by an nth degree monic irreducible polynomial in Fp[x], and
we’re done.

Remark 4.5. If we assume theorem 3.1, then this proves that irreducible polynomials in
Fp[x] of arbitrary degree always exist, which guarantees that theorem 4.3 always works
without needing the very strong lemma 4.1.
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