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In this paper, we discuss properties of finite fields such as the criteria for
subfields of finite fields and finite extension fields.

§1 Definitions and Properties

We refer to the operations + and · as addition and multiplication, respectively, and +
and · are implied to be binary operations over the sets named in the definitions below.
We use the regular definitions for groups and fields.

A finite field is a field with a finite order. We first explore some initial properties of
the finite field.

Definition 1.1. The characteristic of a field F is the smallest number m such that
adding 1 m times gives the additive identity. If m doesn’t exist (i.e. the field is infinite),
then we say F has characteristic 0.

Proposition 1.2

The characteristic of a finite field is a prime p, and furthermore there does not exist
any other primes q such that 1 + 1 + . . .+ 1︸ ︷︷ ︸

q ones

= 0.

Proof. Suppose that p can be expressed as ab with a, b ∈ F . Then 0 = p = ab, but since
the multiplicative group F \ {0} is closed, ab must be in this group and thus cannot be 0,
contradiction, so p is prime. By definition q must be greater than p, but this contradicts
our assumption that p = q = 0.

Proposition 1.3

If F is a finite field with q elements, then aq = a for all a ∈ F .

Proof. This is clearly true for a = 0. By definition of a group, all of the nonzero elements
of F form an abelian group (which we denote as F× and call the multiplicative group
of F ) of order q − 1. All groups satisfy the property that a|G| = eG. As |G| = q − 1, it
follows that aq−1 = eG for all a ∈ F×. Therefore, aq = a for all a ∈ F×. As we know
that this is also true for a = 0, we are done.
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§2 Classification of general finite fields

We introduce a few claims that will help us prove the final theorem.

Proposition 2.1 (Freshman’s dream)

If a finite field F has a characteristic of p, then taking the pth power is linear. That
is, for any positive integer n,

(x+ y)p
n

= xp
n

+ yp
n

over F.

Proof. Note that from distributivity in fields, the Binomial Theorem must hold.
We use induction. When we expand (x+ y)p, we have by the Binomial Theorem that

(x+ y)p =

(
p

0

)
xp +

(
p

1

)
xp−1y + · · ·+

(
p

p− 1

)
xyp−1 +

(
p

p

)
yp.

Note that
(
p
i

)
will not have have p in the denominator ∀i ∈ [0, p] since p is prime, so

these terms are all divisible by p except
(
p
0

)
and

(
p
p

)
because the rest all have p in the

numerator. Hence, all that remains in the expansion is xp + yp. We can then take the
nth power to get the desired result.

Theorem 2.2 (Order of Finite Fields)

The order of a finite field F is pn for some prime p and positive integer n.

Proof. Suppose that two primes p and q divide the order of F. By Cauchy’s Theorem,
there must exist elements of order p, q in the additive group F, but this would require
that p = q = 0, contradiction.

Note 2.3. Let Fx denote a field with size x. Note that x must be a prime power. By
the end of the section, we will realize that Fx is unique – that it is the field with size x,
up to isomorphism.

Example 2.4

Z/nZ is a finite field if and only if all elements of Z/nZ have a multiplicative inverse
– in other words, n must be prime.

Lemma 2.5 (Factorization)

Let F be a finite field and K a subfield of F . Then, the polynomial f(x) = xq − x
in K[x] factors in F [x] as

f(x) =
∏
a∈F

(x− a),

and F is a splitting field of f(x) over K.
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Proof. Since f(x) is a degree-q polynomial, it must have at most q roots in F . From
Proposition 1.3, we have that all elements of F are roots of the polynomial as xq = x for
all x ∈ F . Therefore, there must be q roots.

It follows that f(x) splits in F , and cannot split in any subfield of F , by definition of
splitting field.

Lemma 2.6 (Multiple Roots)

An element α ∈ F is a multiple root of f ∈ F [x] if and only if it is a root of both f
and its derivative f ′.

Proof. We let f(x) = (x − α)g(x), where α is an arbitrary root. We just take the
derivative: f ′(x) = (x− α)g′(x) + g(x).

If α is a root of f ′(x), x − α must divide (x − α)g′(x) + g(x). As the first term of
(x−α)g′(x) has an x−α term, this implies that α must also be a root of g(x), and hence
a double root of f(x).

Conversely, if α is a double root of f(x), x − α must divide g(x). Therefore, x − α
must divide (x− α)g′(x) + g(x), so x− α|f ′(x), which completes the proof.

Theorem 2.7 (Existence and Uniqueness)

For every prime p and positive integer n, there exists a finite field with pn elements.
Any finite field of the same order is isomorphic.

Proof. We prove each claim separately.

• Let q = pn, and let F be the splitting field of f(x) = xq − x over Fp[x]. Since the
derivative of f is qxq−1 − 1 = −1 in Fp[x], we know from Lemma 2.5 that f(x)
must not have any multiple roots.

Let’s make a set S = {a ∈ F |aq − a = 0}. Note that S must be a subfield of F , as
S contains 0, Freshman’s Dream on F leads to (a− b)q = aq − bq = a− b, and for
a, b ∈ S we have (ab−1)q = aqb−q = ab−1 ∈ S. Also, xq − x must split in S because
S contains all of its roots, so F must be a subfield of S. Hence, F = S, and since
S has q elements, F must be the finite field with q elements.

• We know that because F has order pn that F has characteristic p, and therefore
Fp must be a subfield of F . (We already know Fp is a field.) From Lemma 2.4, we
know that xq − x must factor into Πa∈Fp(x− a). This implies that F must be a
splitting field of Fp. As all splitting fields of any generic field G must be unique up
to isomorphism, all F ∼= Fp.

We know from uniqueness that all finite fields with the same order are isomorphic.
Therefore, we can refer to Fp as the field with cardinality of p.

Example 2.8

We know know that F3 is the unique field of cardinality 3.
We construct a field K = F3(η), where η is a root of f(x) = x2 + 2x+ 5 in F3[x].

K must be the finite field with 9 elements, or F9.
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§3 Subfield Criteria

In this section, we find criteria for the sub
We first introduce a lemma that gives a basic criterion for subfields.

Lemma 3.1

Let F be a finite field containing a subfield K with order q. Then F has qm elements,
where m = [F : K].

Proof. By definition of degree, we can set F as a vector space over K. Obviously, the
dimension of F must be finite. Therefore, every basis of F over K must have exactly
m = [F : K] elements.

By definition of vector space, every element of F can be expressed as k1b1 + · · ·+kmbm
for ki ∈ K for all i ∈ {1, 2, . . . ,m}.

Each of the ki can take exactly q values, so as there are m such ki there exist qm

elements in F .

We use Lemma 3.1 to find a stronger criterion for finding subfields.

Theorem 3.2 (Subfield Criterion)

Let Fq be the finite field with q = pn elements. Then every subfield of Fq has order
pm, where m is a positive divisor of n. Conversely, if m|n, then there is exactly one
subfield of Fq with pm elements.

Before we begin, we first prove the following lemma.

Lemma 3.3

If m|n, then pm − 1|pn − 1.

Proof. Let n = qm. This implies that pn − 1 = pqm − 1, which in turn is equal to
(pm)q − 1 = (pm)q − (1)q. The expression is well-known to factor into (pm − 1)((pm)q−1 +
(pm)q−2 + · · ·+ pm + 1).

Proof. We know that the cardinality of a finite field must be a prime power, and from
Lemma 3.1, we have that if G is a subfield of F , then |F | is a power of |G|. Therefore, the
cardinality of all subfields of Fq must be equal to pm for some m such that (pm)k = pn

for positive integer k. This implies that m|n.
For the converse, we again use splitting fields. Note that by our previously stated

lemma, if m|n, then pm−1|pn−1. Therefore, xp
m−1−1 divides xp

n−1−1 in Fp[x]. Thus,
every root of xp

m − x must also be a root of xp
n − x = xq − x (note that we multiplied

x to both sides), and is thus an element of Fq. It follows that the splitting field K of
xp

m − x over Fp is a subfield of Fq. We know from our proof of existence in Section 2
that K must have a cardinality of pm.

As xp
m − x has only pm roots, there is only one possible splitting field K. From

Theorem 2.5, it follows that there is exactly one subfield of Fq with pm elements.
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§4 Finite Extension Fields

In this section, we explore the field extensions of finite fields.
We start with the following proposition.

Theorem 4.1

For every finite field Fq, the multiplicative group F×q is cyclic.

Proof. We know from Theorem 2.2 that the order of F×q is pn − 1 for some prime p and
integer n. Then, there must be n roots of pn − 1 – in other words, n elements whose
order divides n.

All non-cyclic finite abelian groups have subgroups of the form (Z//ZpZ/)Z2 for some
integer p, or in other words it has p2 elements of order x|p. Therefore, the multiplicative
group F×q is cyclic.

To proceed, we need the following definition.

Definition 4.2. A primitive element a of a finite field F of size pn for prime p and
positive integer n is an element such that an has order pn − 1.

In other words, a primitive element a of a finite field Fq of size pn is the generator of a
the cyclic group F×q . Therefore, we know that Fq must have φ(q) primitive elements, as
all elements a ∈ Fq relatively prime to q can generate such a multiplicative group.

We’re now ready to prove an important result.

Theorem 4.3 (Finite Extension Fields)

Let Fq be a finite field and Fr a finite extension field. Then

• Fr is a simple extension of Fq, i.e. Fr = Fq(β) for some β ∈ Fr.

• every primitive element of Fr can serve as a defining element β of Fr over Fq.

Proof. Let α be the primitive element of Fr. Because Fq(α) contains both 0 and all
powers of α, it follows that it contains all elements of α. It is also clear that Fq(α) doesn’t
contain any more elements than Fr as by definition, Fq(α) ⊆ Fr. Therefore, Fr is a simple
extension, and all primitive elements can serve as defining elements of Fr over Fq.

We can thus express any finite field K with subfield F by adjoining any root β of some
irreducible polynomial of degree [K : F ]. We finally explore a corollary to the above
theorem.

Corollary 4.4

For every finite field Fq and positive integer n, there exists some irreducible polyno-
mial in Fq[x] of degree n.

Proof. Let Fr be the extension field of Fq with order qn such that the degree of Fr /Fq is
n. From the above theorem, Fr = Fq(β) for some β ∈ Fr.

As the degree of such an extension must be finite, β is an algebraic extension. Therefore,
β must have a minimal polynomial mβ(x) of degree n, and by definition of minimal
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polynomial mβ(x) is irreducible and all coefficients must be in Fq. Thus, there must exist
some irreducible polynomial in Fq[x] of degree n.

In this paper, we discussed the existence and uniqueness of finite fields, criteria for
subfields, and the relation of primitive elements with finite extension fields. We finally
proved the existence of irreducible polynomials in all finite polynomial fields Fq[x].
Irreducible polynomials inspire even more discussion not included here.
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