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1. Introduction

In this paper, we will prove the structure theorem for finitely generated modules over a
principal ideal domain. Sections 2 and 3 will define and provide examples of rings, ideals,
quotient rings, and ring homomorphisms. Section 4 will define more specific types of rings,
including principal ideal domains, which are the main focus of this paper. Sections 5 and 6
will introduce modules, submodules, quotient modules, and module homomorphisms. Sec-
tion 7 will define special properties of modules. Section 8 will prove preliminary results,
and Section 9 will contain the actual proof of the structure theorem. Section 10 will discuss
consequences of the structure theorem, such as the classification of finitely generated abelian
groups.

2. An introduction to rings

Definition 2.1.

(1) A ring is a set R with two binary operations + and ×, which are addition and
multiplication respectively, satisfying the following axioms:
(a) (R,+) is an abelian group.
(b) × is associative, so (a× b)× c = a× (b× c) for all a, b, c ∈ R.
(c) The distributive law holds, so for all a, b, c ∈ R:

a× (b+ c) = a× b+ a× c

and

(a+ b)× c = a× c+ b× c.
(2) The ring R has an identity if there exists an element 1 ∈ R such that 1×a = a×1 = a

for all a ∈ R.

Remark 2.2. From now on, we will assume that all rings have an identity unless stated
otherwise.

Notice that multiplicative inverses and a multiplicative identity are not guaranteed for
rings, like they are for fields.

Now, let’s consider some examples of rings.

(1) The prototypical example of a ring is the integers Z. They form an abelian group
under addition and have a well-defined multiplication operation, under which inverses
are not guaranteed. However, Z has significant structure over a typical ring; for
example, multiplication in Z is commutative, and there is an identity in Z.

(2) All fields are rings under the same addition and multiplication operations.
1
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(3) The ring of n × n matrices with entries in a ring R form a matrix ring, denoted by
Mn(R), where addition is defined componentwise and multiplication is defined by
normal matrix multiplication. This ring is not commutative.

(4) Let R be a ring with identity and commutative multiplication and x1, . . . , xn be
variables. Then R[x1, . . . , xn], the set of polynomials of x1, . . . , xn with coefficients
in R, forms a ring, which also has identity and commutative multiplication.

(5) The integers modulo any integer n, or Z/nZ, always forms a ring with identity and
commutative multiplication.

Notice that in Z/nZ for composite n, nonzero elements can multiply to 0 (for example,
take 2 · 3 in Z/6Z). We give such elements a special name:

Definition 2.3. Let R be a ring. An element a ∈ R is called a zero divisor if there is
another nonzero element b ∈ R such that ab = 0.

Example. In the matrix ring M2(Z), the matrix

[
1 0
0 0

]
is a zero divisor, since:[

1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
.

Let’s consider M2(Z) again. While not every element has a multiplicative inverse in this

ring, some elements do. For example,

[
2 5
1 3

] [
3 −5
−1 2

]
= I, where I is the identity matrix[

1 0
0 1

]
. These elements also have a special name:

Definition 2.4. Let R be a ring with identity. An element a ∈ R is called a unit if there is
an element b ∈ R such that ab = 1.

There is also another class of elements in rings that generalizes primes in Z.

Definition 2.5. Let R be a ring, and let a, b ∈ R. A non-unit element r ∈ R is prime if,
whenever r divides ab, either r divides a or r divides b.

Remark 2.6. This is just one way to generalize the primes in Z; the other way gives rise to the
class of irreducible elements, which are elements that can only be expressed as the product
of a unit and another element. Primes and irreducibles do not always coincide. They only
represent the same elements if the ring is an integral domain, which we will define later.

3. Subrings, ideals, quotient rings, and ring homomorphisms

Naturally, we consider next substructures of rings, quotients of rings, and ring homomor-
phisms.

3.1. Subrings and ideals.

Definition 3.1. Let R be a ring. A subset S ⊆ R is a subring if S is a ring under the same
operations (+ and ×) as R.

To see some examples of subrings, let us take the most familiar ring, Z. Notice that 5Z,
all of the multiples of 5 in Z, is almost a ring. It is closed under addition and multiplication
as defined over Z, but it doesn’t contain the identity. However, 5Z has another important



STRUCTURE THEOREM FOR FINITELY GENERATED MODULES OVER A PID 3

property: when any element of Z is multiplied by an element of 5Z, it is also an element of
5Z. As a result, it seems like 5Z is still a useful substructure to consider. It turns out that
the structure of an ideal captures the important properties of 5Z:

Definition 3.2. Let R be a ring. A subset I ⊆ R is a left ideal if it is nonempty and satisfies
the following properties:

(1) If a, b ∈ I, then a+ b ∈ I.
(2) If r ∈ R and a ∈ I, then ra ∈ I.

The definition of a right ideal is the same, except the order of the terms in the second
property is switched. If an ideal is both a left ideal and a right ideal, then it is a two-sided
ideal. For the remainder of this paper, if an ideal is not specified to be left or right, it is
assumed to be two-sided.

We provide some examples of ideals, which the reader can verify:

(1) In Z, the set nZ is a left ideal for any integer n. Since multiplication in Z is commu-
tative, nZ is a two-sided ideal.

(2) In M2(Z), the set of matrices in the form

[
0 a
0 b

]
for all integers a and b forms a left

ideal. The set of matrices in the form

[
a b
0 0

]
for all integers a and b forms a right

ideal.
(3) For any ring R, the set of polynomials with a constant coefficient of 0 forms a two-

sided ideal in R[x].

We say that an ideal is generated by a subset S = {s1, . . . , sn} if is of the form {r1s1 +
r2s2 + · · · + rnsn | r1, . . . , rn ∈ R}. Such an ideal is denoted by (S). For example, the ideal
nZ for an integer n is just all the multiples of n, so it can be written as (n).

We can ”compose” two ideals into other ideals in a number of ways:

Proposition 3.3. Let I and J both be two-sided ideals in R. Then the following are two-sided
ideals:

(1) I + J , which is defined as {a+ b | a ∈ I, b ∈ J}
(2) I ∩ J
(3) IJ , which is defined as all finite sums a1b1 + · · · + anbn, where a1, . . . , an ∈ I and

b1, . . . , bn ∈ J
Some types of ideals are special enough that they deserve special terminology:

Definition 3.4. Let I and J be ideals in a ring R.

(1) I is maximal if there is no ideal of R, other than R itself and I, that contains I.
(2) I and J are comaximal if I + J = R.
(3) I is principal if I = (r) for some r ∈ R.

Here are some examples of ideals with these special properties:

(1) The ideal pZ, or (p), is maximal in Z. It is also principal, since it is generated by a
single element.

(2) For two relatively prime integers m and n, the ideals mZ and nZ in Z are comaximal,
since there is a solution to mx+ ny = 1, and every element in Z is a multiple of 1.

(3) In the ring Z[x], the ideal (x) is maximal. However, the ideal (x− 1) is not maximal,
since (x− 1) is properly contained in the ideal (1, x).
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3.2. Ring homomorphisms.

Definition 3.5. Let R and S be rings. A function φ : R → S is a homomorphism if it
satisfies the following properties:

(1) For any x, y ∈ R, φ(x+ y) = φ(x) + φ(y).
(2) For any x, y ∈ R, φ(xy) = φ(x) + φ(y).

Example. There is a homomorphism φ : Z→ Z/nZ given by a 7→ a (mod n) for any integer
n.

Example. The map φ : R[x]→ R given by p(x) 7→ p(a) for any real number a is a homomor-
phism.

For a ring homomorphism, we can also define its kernel and image in a familiar manner:

Definition 3.6. Let R and S be rings, and let φ : R→ S be a ring homomorphism.

(1) The kernel of φ, or kerφ, is defined by kerφ = {r ∈ R | φ(r) = 0S}.
(2) The image of φ, or imφ, consists of all the elements s in S such that there exists

some r ∈ R with φ(r) = s.

The kernel and image of ring homomorphisms also share familiar properties:

Proposition 3.7. Let R and S be rings, and let φ : R→ S be a ring homomorphism. Then
kerφ is an ideal of R, and imφ is a subring of S.

Proposition 3.8. Let R and S be rings, and let φ : R→ S be a ring homomorphism. Then
imφ = S if and only if φ is surjective, and kerφ = 0R if and only if φ is injective.

A bijective homomorphism, as always, is an isomorphism.

3.3. Quotient rings.

Definition 3.9. Let R be a ring and I an ideal in R. Let r be an element of R. The coset
of r is the set r + I = {r + a | a ∈ I}.

Cosets in rings work very similar to cosets in groups; for example, just like in groups, if
a+ I = b+ I, the element a− b is in I.

Now, we can define quotient rings:

Definition 3.10. Let R be a ring and I an ideal in R. Then the quotient ring R/I is the set
consisting of all the cosets of I in R. Addition is defined such that (a+I)+(b+I) = (a+b)+I,
and multiplication is defined such that (a+ I)(b+ I) = ab+ I.

We will not prove that this, in fact, does form a ring.

Example. Recall that nZ is an ideal in Z for any integer n. There exists the quotient ring
Z/nZ, which consists of the elements 0 + nZ, 1 + nZ, . . . , (n− 1) + nZ.

Just like how there is a natural projection homomorphism from G → G/H, where G is
a group and H a normal subgroup, there is also a natural homomorphism from R to R/I
that sends each element in R to its coset in R/I. Like the group projection, this map is also
surjective and has a kernel of I.

Now, we can prove a key result about ring homomorphisms that involves quotient rings:

Theorem 3.11 (First Isomorphism Theorem for rings). Let φ : R→ S be a ring homomor-
phism. Then R/ kerφ ∼= imφ.
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Proof Sketch. The isomorphism f : R/ kerφ → imφ is given by r + kerφ 7→ φ(r). The rest
of the proof proceeds very similarly to the proof of the group-theoretic version.

�

Using the First Isomorphism Theorem, we can now prove a familiar theorem, generalized
for rings.

Theorem 3.12 (Chinese Remainder Theorem for rings). Let R be a ring, and let I1, I2, . . . In
be comaximal ideals in R. Then R/(I1 ∩ I2 ∩ · · · ∩ In) ∼= R/I1 ⊕R/I2 ⊕ · · · ⊕R/In.

Proof Sketch. It suffices to prove the theorem for two comaximal ideals I and J and extend
the theorem to n comaximal ideals with induction. Consider the homomorphism φ : R →
R/I ⊕R/J defined by x 7→ (x+ I, x+ J). Check that this is a ring homomorphism. There
is always a solution to the equations x ≡ r (mod I) and x ≡ s (mod J), so φ is surjective.
Then show that the kernel of φ is (I ∩ J). By Theorem 3.11, R/(I ∩ J) ∼= R/I ⊕R/J . �

4. Specific classes of rings

Recall the ring Z. Though not a field, it holds much more structure than our definition of
a ring. For example, multiplication is commutative, and there are no nonzero zero divisors.
It turns out that these properties (and more) define more specific classes of rings:

Definition 4.1. (1) A commutative ring is a ring where multiplication is commutative.
(2) An integral domain is a commutative ring with no nonzero zero divisors.
(3) A unique factorization domain is an integral domain where any element can be ex-

pressed as the product of a unit and a number of prime elements. This expression is
unique, up to the choice of unit and the order of the prime elements.

(4) A principal ideal domain is a unique factorization domain where every ideal is gen-
erated by a single element, i.e. every ideal can be expressed as the set of multiples
of a single element.

Here are some examples of these special types of rings:

(1) An example of a noncommutative ring is the matrix ring M2(Z).
(2) The ring Z[

√
−5], where elements are of the form a + b

√
−5 for integers a, b, is an

integral domain but not a unique factorization domain. For example, 6 = 2 · 3, but
6 is also (1 +

√
−5)(1 −

√
−5. In both cases, the factors of 6 are irreducible (which

can be checked), so 6 does not have unique factorization.
(3) Let F be a field. Then the polynomial ring F [x1, . . . , xn] is a unique factorization

domain, but not a principal ideal domain, when n ≥ 2. (This is nontrivial.)
(4) The ring Z is a principal ideal domain. To see why, notice that if I is an ideal of

Z, the abelian group (I,+) is a subgroup of the group (Z,+). Since (Z,+) is cyclic,
so is (I,+). Let (I,+) = 〈n〉, where n is an integer. Then I = {mn | m ∈ Z}, so
I = (n). Therefore, all ideals in Z are principal.

Clearly, principal ideal domains have much more structure than standard rings. For ex-
ample:

Theorem 4.2. Let R be a principal ideal domain and p ∈ R be a prime. Then (p) is
maximal.
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Proof. Assume there is an ideal m in R such that (p) ⊂ m. Since R is a principal ideal
domain, we can write m = (m) for some m ∈ R. Since (p) ⊂ (m), we must have p ∈ (m).
Let p = am for some a ∈ R. Since p is a prime, p divides either a or m, so am ∈ (p).

If p divides a, then write a = bp for some b ∈ R. Then p = bpm, so p(1− bm) = 0. Since
R is an integral domain, either p or 1− bm is 0. Since p is nonzero, bm = 1. Therefore, 1 is
in (m), so (m) = R.

If p divides m, then let m = cp for some c ∈ R. For every x ∈ (m), we can write x = dm
for some d ∈ R, so every x can also be written as dcp. Therefore, (m) ⊆ (p), so (m) = (p).
Thus, if an ideal contains (p), it is either R or (p) itself. Therefore, (p) is maximal. �

5. Introduction to modules

As a mnemonic, modules can be thought of as vector spaces, but defined over rings.

Definition 5.1. Let R be a ring. A left R-module, or a left module over R, is a set M
together with two operations: a binary operation of M , and an action of R on M (equivalent
to a map R×M →M) that satisfies the following properties:

(1) M is an abelian group under +.
(2) Let r ∈ R and m ∈ M . Then the action of R on M is denoted rm, and it satisfies

the following for all r, s ∈ R and m,n ∈M :
(a) (r + s)m = rm+ sm.
(b) r(sm) = (rs)m.
(c) r(m+ n) = rm+ rn.
(d) 1Rm = m.

A right module over R can be defined analogously. If the underlying ring R is commutative,
a right module can be defined for each left module by setting rm = mr, and vice versa. Since
we primarily concern ourselves with commutative rings in this paper, we will not specify
whether a module is left or right, due to this relation between left and right modules over
commutative rings.

We give the following examples of modules.

(1) Let R be a ring. Then R is a left R-module over itself, where the action is just left
multiplication.

(2) Let R be a ring, and let n be a positive integer. Define Rn = {(r1, r2, . . . , rn) | ri ∈ R}
for all i. Then Rn is a left R-module, where addition is defined componentwise, and
the action of R on Rn is componentwise left multiplication.

(3) Let R = Z, and let G be an abelian group whose operation is written as +. Then
G forms a Z-module as follows. Let n ∈ Z and g ∈ G. If n is positive, then let
ng = g + g + · · · + g, where there are n copies of g. If n is zero, let ng = 0. If n is
negative, let ng = −g − g · · · − g, where there are n copies of g.

(4) Let F be a field and V be a vector space of F . Then V is also an F -module.
(5) Let F be a field, V be a vector space over F , and T be a linear transformation from

V to V . There is an F [x]-module associated with V , given by T . Let T n denote the
function created by composing T for n number of times, with T 0 being the identity.
Take the vector space’s normal addition operation. Let p(x) = anx

n + an−1x
n−1 +

· · ·+ a1x+ a0. The action of p(x) on V is defined as

anT
n(v) + an−1T

n−1V + · · ·+ a1T (v) + a0.
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This forms an F [x]-module.

Definition 5.2. A subset N ⊆ M is a submodule if N is a module under the operations of
M .

Example. Let R be a ring, and let M = R be a left R-module where the action is defined
by left multiplication. The left ideals of R form submodules of M . Likewise, if M is a right
R-module where the action is right multiplication, the right ideals of R form submodules of
M .

Example. Let G be an abelian group. As we saw earlier, G forms a left Z-module. The
submodules of G as a left module are the same as subgroups of G as a group.

6. Quotient modules and module homomorphisms

Once again, we consider quotients of modules by their substructures and module homo-
morphisms.

6.1. Module homomorphisms.

Definition 6.1. Let M and N be R-modules. A function φ : M → N is a homomorphism
if it satisfies the following properties:

(1) For any a, b ∈M , φ(a+ b) = φ(a) + φ(b).
(2) For any r ∈ R and a ∈M , φ(ra) = rφ(a).

Example. There is a projection homomorphism πi : Rn → R for 1 ≤ i ≤ n, defined by
(x1, . . . , xn) 7→ xi. These homomorphisms are surjective, and their kernel consists of the
elements with a 0 in position i.

Example. Let G be a Z-module. Since multiplication by an element of Z is the same as
addition of elements in G, the second condition in our definition of module homomorphisms
is a result of the first. It follows that homomorphisms of G as a Z-module are the same as
group homomorphisms of G.

We can also define notions of kernel and image for module homomorphisms:

Definition 6.2. Let M and N be rings, and let φ : M → N be a module homomorphism.

(1) The kernel of φ, or kerφ, is defined by kerφ = {m ∈M | φ(m) = 0N}.
(2) The image of φ, or imφ, consists of all the elements n in N such that there exists

some m ∈M with φ(m) = n.

The kernel and image of module homomorphisms also share familiar properties:

Proposition 6.3. Let M and N be modules, and let φ : M → N be a module homomorphism.
Then kerφ is a submodule of M , and imφ is a submodule of N .

Proposition 6.4. Let M and N be modules, and let φ : M → N be a module homomorphism.
Then kerφ = 0M if and only if φ is injective, and imφ = N if and only if φ is surjective.
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6.2. Quotient modules.

Definition 6.5. Let R be a ring, let M be an R-module, and let N be a submodule of M .
The quotient group (M,+)/(N,+) can be made into an R-module by defining, for all r ∈ R
and x+N ∈M/N :

r(x+N) = rx+N.

Notice that (M,+)/(N,+) indeed has group structure, since (M,+) is abelian, so all its
subgroups are normal. We will not prove that quotient modules form modules, though.

As always, there is a natural projection homomorphism from a module M to its quotient
module M/N given by m 7→ m + N . This homomorphism is also surjective, and its kernel
is N .

Theorem 6.6 (First Isomorphism Theorem for modules). Let M,N be R-modules, and let
φ : M → N be an R-module homomorphism. Then R/ kerφ ∼= imφ.

The proof of this is very similar to the First Isomorphism Theorem for groups and rings,
and the reader is invited to prove this as an exercise.

7. Properties of modules

Definition 7.1. Let A be a subset of M . Let RA = {r1a1 + r2a2 + · · ·+ rnan | r1, . . . , rn ∈
R, a1, . . . , an ∈ A}.

(1) The set RA is called the submodule of M generated by A. (Proving that this is a
submodule is left to the reader.)

(2) Let N be a submodule of M (possibly M itself). Then N is finitely generated if there
is a finite subset A of M such that N = RA.

(3) Let N be a submodule of M (possibly M itself). Then N is cyclic if there is an
element a ∈M such that N = Ra.

Definition 7.2. Let M be an R-module.

(1) A subset m1, . . . ,mn is linearly independent if the only solution to the equation∑
rimi = 0, where each ri ∈ R, is when all the ri are 0.

(2) The rank of M is the maximum number of linearly independent elements in M .

Definition 7.3. Let M be an R-module.

(1) A subset S of M is called a basis if S is linearly independent and generates M .
(2) A module M is called free if it has a basis.

Remark 7.4. Not every module is free. Let R be the polynomial ring F [x, y] for a field F .
Then the ideal (x, y) is a module (since all ideals form modules over their rings), but it is
not free. Its generators are x and y, but (y)x+ (−x)y = 0, so its generators are not linearly
independent. Thus, (x, y) is not free.

Definition 7.5. LetM1, . . . ,Mk be a collection ofR-modules. The set of k-tuples (m1, . . . ,mk),
where each mi ∈Mi and addition and action by R are defined componentwise, is called the
direct sum of M1, . . . ,Mk, and denoted M1 ⊕ · · · ⊕Mk.

Remark 7.6. There is another condition; in a direct sum of modules, all but finitely many of
the entries must be nonzero. This distinction is not relevant in direct sums of finitely many
modules.
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Proposition 7.7. Let N1, . . . , Nk be submodules of an R-module M . Let N1 + · · · + Nk be
the submodule defined by {n1 + · · ·+nk | ni ∈ Ni}. Then N1⊕ · · ·⊕Nk

∼= N1 + · · ·Nk if and
only if, for every Nj, we have that Nj ∩ {N1, . . . , Nj−1, Nj+1, . . . , Nk} = {0}.

Remark 7.8. Therefore, whenever we want to show that a module M is isomorphic to
the direct sum of some modules M1, . . . ,Mk, it suffices to show that every element in
M can be expressed as a linear combination of elements in M1, . . . ,Mk, and that Mj ∩
{M1, . . . ,Mj−1,Mj+1, . . . ,Mk} = {0} for every Mj.

Definition 7.9. Let M be a module.

(1) We say that M is a torsion module if there exists m ∈M such that am = 0 for some
nonzero a ∈ R.

(2) Likewise, we say that M is torsion-free if there are no such elements.
(3) The torsion submodule of M consists of the elements m ∈ M such that there exists

m ∈M such that am = 0 for some nonzero a ∈ R.

8. Preliminary results

This section will prove the many preliminary results that are necessary to show the struc-
ture theorem. Many of these results have proofs that are long and not particularly enlight-
ening. For proofs that are not in this section, they can be found in the appendix at the end
of this paper.

Proposition 8.1. Let M be a finitely generated, free module over a principal ideal domain
R, and let N be a submodule of M . Then N is free, and its rank is less than or equal to the
rank of M .

Remark 8.2. The theorem also holds true when M does not have a finite basis, but that
results is not necessary for our purposes.

The structure theorem essentially decomposes every finitely generated module into a direct
sum of some smaller modules. The following result gives us a way to begin doing so, which
we will eventually relate later to the torsion submodule of a module.

Lemma 8.3. Let M and M ′ be modules over a principal ideal domain R, and assume that
M ′ is free. Let φ : M → M ′ be a surjective R-module homomorphism. Then there exists a
free submodule N of M such that the restriction of φ to N , or φ

∣∣
N

, induces an isomorphism
of N and M ′, and such that M ∼= N ⊕ kerφ.

Proof. Let x′1, . . . , x
′
n be a basis of M ′. For each 1 ≤ i ≤ n, let xi be an element of M such

that φ(xi) = x′i. Let N be the submodule of M generated by x1, . . . , xn. Since x′1, . . . , x
′
n are

linearly independent, so are x1, . . . , xn. Therefore, N is free, and φ induces an isomorphism
N ∼= M ′.

It suffices to show now that M ∼= N⊕kerφ. Let x be an element of M . Then φ(x) ∈M ′, so
it can be expressed as

∑
aix
′
i for some elements ai ∈ R. But φ(

∑
aixi) is also equal to

∑
aix
′
i,

so x−
∑
aixi must lie in the kernel of φ. Therefore, x can be written as

∑
aixi+(x−

∑
aixi).

The first term lies in N , and the second lies in kerφ, so M = N + kerφ. Since φ is an
isomorphism, its kernel is 0, so N ∩ kerφ = 0. Therefore, M ∼= N ⊕ kerφ. �

Proposition 8.4. A finitely generated torsion-free module over a principal ideal domain is
free.
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Proof. Let M be a finitely generated torsion-free module over a principal ideal domain R.
If M = 0, then the statement is trivial, so assume that M 6= 0. Let X = {x1, . . . , xn} be
a finite set of generators of M . Let S = {x1, . . . , xk} be a maximal subset of X with the
property that whenever r1x1 + · · ·+ rkxk = 0 for elements r1, . . . , rk ∈ R, r1 = · · · = rk = 0.
Since M is torsion-free, any subset of size 1 satisfies this property, so S is nonempty.

Consider the submodule F generated by S. Now let y be an element of X that is not in
S. Since S is maximal, there must be r, r1, . . . , rk that are not all 0 such that ry + r1x1 +
· · ·+ rkxk = 0. Therefore, ry = −

∑k
i=1 rixi, so ry ∈ F . If r = 0, then all the ri on the right

hand side must also be 0, so r must be nonzero. Let R be the product of all such r for all
elements of X that are not in S. Then every element of RX = {Rx | x ∈ X} is contained
in F . Since X generates M , every element of RM is contained in F . Therefore, there is an
R-module homomorphism φ : M →M given by a 7→ Ra. Since M is torsion-free, if Ra = 0,
then either R or a must be 0. If R is 0, then there are no elements in X that are not in S,
so X = S. This would mean that X is linearly independent, so M is free. If R is nonzero,
then the kernel of φ is 0. Notice also that the image of φ is RM. By Theorem 6.6, M ∼= RM .
Notice that F is generated by a linearly independent set, so F is free. Since RM is contained
in F , RM must also be free by Theorem 8.1. Therefore, M is free. �

Not every finitely generated module is free, but it would be useful to decompose each
finitely generated module into the direct sum of some free module and some other module.
By the previous result, we know that this other module has to be a torsion module. Indeed,
there is a way to decompose every finitely generated module into a direct sum of its torsion
module and some other module:

Lemma 8.5. Let M be a finitely generated module. Then M/Mtors is free, and there exists
a free submodule N of M such that M = Mtors ⊕N .

Proof. Consider the surjective homomorphism φ : M →M/Mtors. The kernel of φ is clearly
Mtors. By Lemma 8.3, M is isomorphic to Mtors ⊕M/Mtors. Now, we prove that M/Mtors

is torsion-free.
Let x ∈M and x̄ be its residue class mod Mtors. Let b be a nonzero element in R such that

bx̄ is 0. Then bx = 0, so bx is in Mtors. Therefore, there exists a nonzero c ∈ R such that
cbx = 0. Therefore, x ∈ Mtors, so x̄ = 0. Therefore, M/Mtors is torsion-free. By Theorem
8.4, M/Mtors is also free. By Theorem 8.3, since M/Mtors is the image of φ, it is isomorphic
to some submodule of M . Let N be this submodule. N must be free, giving us the desired
decomposition M = Mtors ⊕N . �

So how does taking a direct sum affect the rank of the resulting module? The following
three results give us a way to characterize how ranks and direct sums are related.

Lemma 8.6. Let A and B be free modules over a principal ideal domain R with ranks m
and n respectively. Then A⊕B is free, and it has rank m+ n.

Proof Sketch. Let a1, . . . , am be a basis for A and b1, . . . , bn be a basis for B. Showing that
(a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn) forms a basis for A⊕B is not too difficult. �

Lemma 8.7. Let M be a module over a principal ideal domain R and N a free module with
rank n such that M/N is torsion. Then M has rank n.

Lemma 8.8. Let R be a principal ideal domain, and let A and B be modules over R with
ranks m and n respectively. Then A⊕B has rank m+ n.
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All the above theorems help us prove the following result, which is key in proving the
structure theorem:

Lemma 8.9. Let R be a principal ideal domain, let M be a free R-module with finite rank
n, and let N be a submodule of M . Then there exists a basis y1, . . . , yn of M such that there
is a basis a1y1, . . . , amym of N , where a1 | a2 | · · · am.

Recall that a module C is cyclic if there is some x ∈ C such that C = Rx. We can then
define a homomorphism φ : R→ C by φ(r) = rx. Since C = Rx, φ is surjective. The kernel
of φ is merely all the elements a ∈ R such that ax = 0. The set of these elements is given a
special name:

Definition 8.10. Let M be a module over a ring R. The annihilator of an element x ∈M
is the set consisting of all elements a such that ax = 0 denoted by annx. The annihilator
of a module M is the set consisting of all elements a such that am = 0 for every m ∈ M ,
denoted by annM .

Notice that the annihilator of a cyclic module C is equivalent to the kernel of the homo-
morphism we defined that maps r to rx. Therefore, by Theorem 6.6, R/ annC ∼= C.

In fact, annihilators are always ideals. Therefore, in a principal ideal domain R, we can
write annC = (a) for some (a) ∈ R. Thus, R/(a) ∼= C. The structure theorem holds that
we can write any finitely generated module over a principal ideal domain as a finite direct
sum of cyclic modules, which are bound by certain relations.

9. Structure theorem

Theorem 9.1 (Structure theorem, invariant factors form, existence). Let M be a finitely
generated module over a principal ideal domain R.

(1) M is isomorphic to the following direct sum:

M ∼= Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)

for some nonnegative integer r and nonzero, nonunit elements a1, a2, . . . am ∈ R such
that a1 | a2 | · · · | am.

(2) In the above decomposition, Mtors
∼= R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am).

Proof. Let x1, . . . , xn be a finite set of generators for M with minimal size. Let Rn be the
free R-module of rank n with basis b1, . . . , bn. Define a homomorphism φ : Rn → M by
defining φ(bi) = xi for each 1 ≤ i ≤ n. Since the xi generate M , φ is surjective. By Theorem
6.6, we have that Rn/ kerφ = M . By applying 8.9 to Rn, with kerφ as the submodule,
there is another basis y1, . . . , yn of Rn such that a1y1, . . . , amym form a basis for kerφ with
a1 | · · · | am. Therefore, since M ∼= Rn/ kerφ:

M ∼= (Ry1 ⊕ · · · ⊕Ryn)/(Ra1y1 ⊕ · · · ⊕Ra1ym)

.
Define a R-module homomorphism φ : (Ry1⊕· · ·⊕Ryn)→ (R/(a1)⊕· · ·⊕R/(am)⊕Rn−m)

by (b1y1, . . . , bnyn) 7→ (b1 (mod (a1)), b2 (mod (a2)), . . . , bm (mod (am)), bm+1, . . . , bn).
The kernel of φ is clearly the elements such that ai divides bi for all 1 ≤ i ≤ m. This is

just Ra1y1 ⊕ · · · ⊕ Ramym. By Theorem 6.6, therefore, M is isomorphic to the image of φ.
Since φ is clearly surjective, M ∼= (R/(a1) ⊕ · · · ⊕ R/(am) ⊕ Rn−m). This gives our desired
decomposition in part (1).
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Now, we will prove part (2). Since a1 | · · · | am, (am) annihilates the module R/(a1) ⊕
· · · ⊕ R/(am). Therefore, R/(a1) ⊕ · · · ⊕ R/(am) is a torsion submodule of M . Since M
is isomorphic to the direct sum of Rr and this torsion module, by Theorem 8.7, the rank
of M is r. Therefore, the dimension of the free module in the decomposition given in
Theorem 8.5 is uniquely determined. Thus, in the decomposition M ∼= Mtors ⊕ F , where
F is a free module, F must have rank r. Thus, F ∼= Rr, so M = Mtors ⊕ Rr. Thus,
Mtors

∼= R/(a1)⊕ · · · ⊕R/(am). �

Definition 9.2. In Theorem 9.1, the integer r is called the free rank of M , and the factors
a1, . . . , an are called the invariant factors of M .

Theorem 9.3 (Structure theorem, elementary divisors form, existence). Let M be a finitely
generated module over a principal ideal domain R. Then M is isomorphic to the following
direct sum:

M ∼= Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕ · · · ⊕R/(pαt
t )

where r is a nonnegative integer and pα1
1 , p

α2
2 , . . . , p

αt
t are powers of primes in R.

Remark 9.4. The primes p1, p2, . . . , pt need not be distinct.

Proof. Since R is a principal ideal domain, it is also a unique factorization domain. Therefore,
for every invariant factor a1, . . . , am, we can write ai = uqβ11 . . . qβkk for a unit u, primes

q1, . . . , qk, and positive integers β1, . . . , βk. Notice that the ideal (ai) = (qβ11 ) ∩ · · · ∩ (qβkk ).

Therefore, by Theorem 3.12, each R/(ai) is isomorphic to R/(qβ11 ) ⊕ · · · ⊕ R/(qβkk ) as rings
and therefore also as R-modules. Decomposing this way for every ai gives our desired
decomposition. �

To prove uniqueness, we need to introduce some lemmas:

Theorem 9.5. Let R be a principal ideal domain and p ∈ R be a prime. Then R/(p) is a
field.

Proof. We will actually show a more general result: that if I is a maximal ideal, then R/I
is a field. Our result will follow by Theorem 4.2, which states that (p) is maximal.

To show that R/I is a field if I is maximal, we need to show that there are multiplicative
inverses for every nonzero element of R/I. Let a+ I be a nonzero element in R/I. Consider
the set A = {ar + s | r ∈ r, s ∈ I}. We claim that A is an ideal (showing this is left to
the reader). Since a ∈ A, but a /∈ I, A properly contains I. Since I is maximal, A must be
the whole ring R. Therefore, 1 ∈ A, so 1 = ar + s for some r ∈ R and some s ∈ I. Thus,
ar− 1 = −s is also in I. Therefore, (ar− 1) + I = 0, so ar + I = 1 + I. From this, we have
(a+ I)(r+ I) = 1 + I, so a+ I and r+ I are multiplicative inverses. Multiplicative inverses
therefore exist for every nonzero element of R/I, so R/I is a field. Since (p) is maximal,
R/(p) is a field. �

Lemma 9.6. Let R be a principal ideal domain and p ∈ R be a prime. Let F be the field
R/(p), and let M = Rr. Then M/pM ∼= F r.

Proof. Consider the map from Rr to F r such that (a1, . . . , ar) 7→ (a1 (mod (p)), . . . , ar
(mod (p))). Clearly, this is surjective. The kernel is all the elements in Rr where each
entry in the r-tuple is divisible by p. This just pRr. By Theorem 6.6, Rr/pRr = F r. �

Lemma 9.7. Let R be a principal ideal domain and p ∈ R be a prime. Let F be the field
R/(p). Let M = R/(a1)⊕ · · · ⊕R/(ak), where each ai is divisible by p. Then M/pM ∼= F k.
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Proof. Here, we will assume the Third Isomorphism Theorem of rings, which states that if
R is a ring, and I and J are ideals of R with I ⊆ J , then J/I is an ideal, and (R/I)/(J/I) ∼=
R/J .

Let N = R/(a), where a is some element of a1, . . . , ak. Then elements in pN are of the
form p(k + (a)) = pk + (a) for some k ∈ R. These elements can be characterized by the
ideal (p) + (a). Therefore, pN ∼= ((p) + (a))/(a). Since p divides a, (a) ⊆ (p). Therefore,
(p) + (a) is just (p), so pN ∼= (p)/(a). Therefore, N/pN ∼= (R/(a))/((p)/(a)). By the Third
Isomorphism Theorem, this is isomorphic to R/(p) = F . This applies for each copy of R/(a),
so M ∼= F k. �

Theorem 9.8 (Structure theorem, elementary divisors, uniqueness). Let M1 and M2 be
finitely generated modules over a principal ideal domain R. If they are isomorphic, then they
share the same free rank and the same list of elementary divisors (up to ordering).

Proof. Since M1 and M2 are isomorphic, their torsion modules are isomorphic to each other,
too. Let M1 and M2 have free ranks r1 and r2, respectively. Then Rr1 ∼= M1/TorM1

∼=
M2/TorM2

∼= Rr2 . Thus, for any nonzero prime in p ∈ R, Rr1/pRr1 ∼= Rr2/pRr2 . By
Theorem 9.6, Rr1/pRr1 ∼= F r1 , and Rr2/pRr2 ∼= F r2 . Therefore, F r1 ∼= F r2 . Since any two
isomorphic vector spaces have the same dimension, r1 = r2. Since the free ranks of M1 and
M2 are equal, we only need to show that their torsion modules, which are isomorphic, share
the same elementary divisors. Therefore, we can assume that M1 and M2 are both torsion
modules.

We can work for a fixed prime p, since if M1 and M2 have the same elementary divisors
that are a power of p for every p, they share the same elementary divisors. Let the p-primary
submodule of a module M be the direct sum of all the cyclic module factors of M whose
elementary divisors are a power of p. Since M1 and M2 are isomorphic, their p-primary
submodules are isomorphic, since they are the submodules that are annihilated by the same
power of p, and annihilators are invariant under isomorphism. Therefore, it suffices to show
that two isomorphic p-primary submodules share the same elementary divisors.

We use induction on the power of p in the annihilator of the two p-primary submodules
(which are isomorphic). Let P1 be the p-primary submodule of M1, and let P2 be the p-
primary submodule of M2. If the power of p in the annihilator of P1 and P2 is 0, then
P1 and P2 are both 0 and we are done. Otherwise, let the elementary divisors of P1 be
p, . . . , p, pa1 , pa2 , . . . , pas , where there are m copies of p, and 2 ≤ a1 ≤ a2 ≤ · · · ≤ a2. Let
the elementary divisors of P2 be p, . . . , p, pb1 , pb2 , . . . , pbt . Similarly, let there be n copies of
p, and let 2 ≤ b1 ≤ b2 ≤ · · · ≤ bt.

Consider the module pP1. Since every element in the module pR/(px) can be expressed in
the form p(k+ (px)) = pk+ (px) = (px−1), each submodule with elementary divisor px in P1

becomes a submodule with elementary divisor px−1. Therefore, the elementary divisors of pP1

are pa1−1, pa2−1, . . . , pas−1. Similarly, the elementary divisors of pP2 are pb1−1, pb2−1, . . . , pbt−1.
Since P!

∼= P2 (by M1
∼= M2), we have that pP1

∼= pP2. Since the power of p in the annihilator
of pP1 is one less than the power of p in the annihilator of P1, by induction, we have that
the elementary divisors of pP1 and pP2 are the same. Therefore, s = t, and each ai = bi.

Notice that P1/pP1 and P2/pP2 are also isomorphic. Therefore, by Theorem 9.7, P1/pP1
∼=

(R/(p))m+s and P2/pP2
∼= (R/(p))n+t are also isomorphic. Since isomorphic vector spaces

share the same dimension, m+ s = n+ t. We already know that s = t, so m = n. Therefore,
the elementary divisors of P1 and P2 are equal for any prime p, so the elementary divisors
of M1 and M2 are equal too.
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Therefore, since any two isomorphic modules share the same free rank and elementary
divisors, any modules with different free rank or a different list of elementary divisors are
not isomorphic. As a result, elementary divisors and free rank admit a unique decomposition
of every finitely generated module over a principal ideal domain. �

Theorem 9.9 (Structure theorem, invariant factors, uniqueness). Let M1 and M2 be finitely
generated modules over a principal ideal domain R. If they are isomorphic, then they share
the same free rank and the same list of invariant factors (up to ordering).

Proof. Once again, as we showed in the proof that elementary divisors formed a unique
decomposition, we can assume that M1 and M2 are isomorphic torsion modules.

Let a1 | · · · | am be the invariant factors of M1, and let b1 | · · · | bn be the invariant factors
of M2. Since R is a unique factorization domain, the prime power factors of M1 uniquely
give a list of elementary divisors for M1. Notice that we can uniquely reconstruct invariant
factors from a list of elementary divisors: am is the product of the largest prime powers for
each prime, am−1 is the product of the next-largest prime powers for each prime, and so on.
We can do the same for M2 and b1, . . . , bn. Since M1 and M2 share the same elementary
divisors, they share the same invariant factors. Therefore, invariant factors also admit a
unique decomposition. �

10. Consequences of the structure theorem

Theorem 10.1 (Classification of finitely generated abelian groups). Every finitely generated
abelian group can be expressed as the direct sum of the cyclic groups

A = Zn ⊕ Zpr11 ⊕ · · · ⊕ Zprkk
where p1, . . . , pk are primes and r1, . . . , rk are positive integers. The group can also be ex-
pressed as

A = Zn ⊕ Zd1 ⊕ · · · ⊕ Zdm
for positive integers d1, . . . , dm such that d1 | · · · | dm.

These decompositions are unique up to ordering.

Proof. Since every abelian group is a Z-module, this result follows from the structure theo-
rem. �

Corollary 10.2. Let V be a finitely generated vector space over a field F . As an F -module,
V ∼= F t for some nonnegative integer t.

Proof. Vector spaces are clearly PIDs. For any ideal (x) in F , the ideal must include the
entire field, since any y ∈ F can just be written as (yx−1)x. Therefore, F/(x) for any x ∈ F
must be 0. Thus, by the structure theorem, V ∼= F t for a nonnegative integer t. �

The existence of the Jordan canonical form for matrices, a special representation of a
linear transformation as an upper triangular matrix with many other interesting properties,
also follows from the structure theorem. We will not go into detail here, but a proof of this
can be found in Chapter 12 of [1].

References

[1] D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2003.



STRUCTURE THEOREM FOR FINITELY GENERATED MODULES OVER A PID 15

Appendix A. Full proofs of preliminary results

Proposition. Let M be a finitely generated, free module over a principal ideal domain R,
and let N be a submodule of M . Then N is free, and its rank is less than or equal to the
rank of M .

Proof. We use strong induction on the rank of M , which we will denote by n. This is trivial
if n = 0, since then both M and N must simply be 0. Assume now that n > 0 and that the
result holds true for all submodules of free modules with rank n − 1. Let M have a finite
basis (e1, . . . , en). Let M ′ be the submodule generated by (e2, . . . , en). If N is a submodule
of M ′, then the inductive assumption shows that N is free with rank less than or equal to
n− 1. Therefore, we may assume that N is not a submodule of M ′.

Consider the set I of elements a for which there is an element in N of the form f1 = ae1+y,
where y ∈ M ′. In fact, I is an ideal. To see why, let a, b be elements in I. Then there exist
f1 = ae1 + y and f ′1 = be1 + y′. Adding these together gives f1 + f ′1 = (a + b)e1 + (y + y′).
Since (y + y′) ∈ M ′, and (f1 + f2) ∈ N , a + b is in I. A similar argument can be used to
show that I is closed under multiplication by R. Therefore, I is an ideal.

Since R is a principal ideal domain, I is generated by some element d. Let f1 = de1 + y1,
where f1 ∈ N and y1 ∈M ′. Consider L = N ∩M ′. This is a submodule of M ′, which is free
of rank n− 1. Therefore, by induction, it has a basis (f2, . . . , fm) of size m− 1 ≤ n− 1. We
will show that (f1, f2, . . . , fm) forms a basis for N . This has size m, and since m−1 ≤ n−1,
we have that m ≤ n. This will prove our theorem.

Let x be an arbitrary element in N . Since x ∈M , too, it can be expressed as be1+y, where
y ∈M ′. This implies that y ∈M ′, so in this expression of x, b must be in the ideal I. Since I
is generated by d, let b = k1d, where k1 ∈ R. Therefore, x−k1f1 = k1de1 +y−k1(de1 +y1) =
y − k1y1. Since x and f1 are in N , this term is also in N . Since y and y1 are in M ′, this
term is also in M ′. Therefore, x− k1f1 ∈ N ∩M ′ = L. Since L is generated by (f2, . . . , fm),
we can write x− k1f1 as k2f2 + · · ·+ kmfm. Therefore, x = k1f1 + k2f2 + · · ·+ kmfm, so N
is generated by (f1, . . . , fm).

Now, we will show that (f1, . . . , fm) are linearly independent. Suppose that k1f1 +
· · · kmfm = 0. Then k1de1 +k1y1 +k2f2 + · · ·+kmfm = 0. Since y1 and each of f2, . . . , fm are
all in M ′, we can rewrite this relation as k1de1 + l2e2 + · · ·+ lnen = 0, where e2, . . . , en form
a basis for M ′. Since e1, . . . , en are a basis for M , k1d = 0. Since d 6= 0, k1 = 0. Therefore,
k2f2 + · · ·+ kmfm = 0. Since (f2, . . . , fm) are a basis for L, all the coefficients k2, . . . , km are
0. Therefore, (f1, . . . , fm) are linearly independent, so they form a basis for N . �

Lemma. Let M be a module over a principal ideal domain R and N a free module with rank
n such that M/N is torsion. Then M has rank n.

Proof. Let S be a basis of N (of size n). Clearly, S must also be linearly independent in
M , so the rank of M is at least n. Let T = {t1, . . . , tn+1} be a set of n + 1 elements in M .
Since M/N is torsion, for every ti, there must be a nonzero ri ∈ R such that riti is the zero
element in M/N . This implies that riti ∈ N .

If any two ri, rj are equal, then T is linearly dependent (since then, riti = rjtj). Assume
that no two ri, rj are equal. Then the set {riti}, which is contained within N , contains n+ 1
elements. Since the rank of N is n, there exist coefficients si that are not all zero such that∑
siriti = 0. Therefore, T is linearly dependent in M , so the rank of M is at most n. As a

result, M has rank n. �
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Lemma. Let R be a principal ideal domain, and let A and B be modules over R with ranks
m and n respectively. Then A⊕B has rank m+ n.

Proof. By Theorem 8.5, there are free submodules A1 and B1 of A and B, respectively, such
that A = A1 ⊕ Ators and B = B1 ⊕ Btors. By Lemma 8.6, A1 ⊕ B1 is free. Now, we will
prove that (A⊕B)/(A1⊕B1) ∼= (A/A1)⊕ (B/B1). Let φ1 : A→ A/A1 and φ2 : B → B/B1

denote the canonical projections. Both φ1 and φ2 are surjective, so φ1⊕φ2 is also surjective.
The kernels of φ1 and φ2 are A1 and B1 respectively, so the kernel of φ1 ⊕ φ2 is A1 ⊕ B1.
Therefore, by Theorem 6.6, (A⊕B)/(A1 ⊕B1) ∼= (A/A1)⊕ (B/B1).

Since A and B have ranks m and n respectively, and A/A1 and B/B1 are both torsion, A1

and B1 have ranks m and n by Lemma 8.7. Since (A⊕ B)/(A1 ⊕ B1) ∼= (A/A1)⊕ (B/B1),
we have that A ⊕ B = (A1 ⊕ B1) ⊕ ((A/A1) ⊕ (B/B1)). Since both A/A1 and B/B1 are
torsion modules, their direct sum is also torsion. Once again, invoking Lemma 8.7, the rank
of A1 ⊕ B1 is equal to the rank of A ⊕ B. By Lemma 8.6, the rank of A1 ⊕ B1 is m + n.
Therefore, the rank of A⊕B is m+ n. �

Lemma. Let R be a principal ideal domain, let M be a free R-module with finite rank n,
and let N be a submodule of M . Then there exists a basis y1, . . . , yn of M such that there is
a basis a1y1, . . . , amym of N , where a1 | a2 | · · · am.

Proof. If N = 0, then the theorem is trivial.
Assume N 6= 0. For each R-module homomorphism from M to R, the image φ(N) of N

is a submodule of R. Since submodules are closed under addition and multiplication by any
element in R, every submodule of R, including φ(N) is an ideal. Since R is a principal ideal
domain, write φ(N) = (aφ) for some aφ ∈ R. Let Σ be the collection of all these ideals (aφ).
Clearly, Σ is nonempty, since taking φ to be the trivial homomorphism implies that (0) is
in Σ. Thus, Σ has a maximal element, or an element such that (aφ) is not contained in any
other element of Σ. Let this maximal element be (a1). Let (a1) = φ(N), and let y ∈ N be
the element such that φ(y) = a1.

Let x1, . . . , xn be a basis of M , and define πi to be the natural projection homomorphism
such that πi : a1x1 + · · ·+ anxn 7→ ai. Since N is nonzero, there must be some πi such that
πi(N) 6= (0), so Σ cannot contain only (0). Since (0) is included in every other ideal, (0)
cannot be the maximal element of Σ. Because (a1) is maximal, a1 6= 0.

We will now show that a1 divides f(y) for every homomorphism f from M to R. Let g be a
generator for the principal ideal generated by a1 and f(y). Since g must itself be in this ideal,
g can be written as r1a1 + r2f(y) for some r1, r2 ∈ R. Now, consider the homomorphism
ψ : M → R given by ψ : x 7→ r1φ(x) + r2f(x). We have that ψ(y) = r1a1 + r2f(y) = g,
so g ∈ ψ(N). Since a1 is in the ideal generated by g, we have that g divides a1. Therefore,
(a1) ⊆ (g). Since g ∈ ψ(N), and ψ(N) is itself an ideal, we must have (g) ⊆ ψ(N). Therefore,
we have a chain of inclusions (a1) ⊆ (g) ⊆ ψ(N). Since (a1) is maximal, these inclusions
must be equalities, so (a1) = (g) = ψ(N). Since f(y) is also in (g), g must divide f(y).
Therefore, a1 must divide f(y).

Now, we apply this result to the projection homomorphisms πi we defined earlier. Since
a1 must divide πi(y), we can write πi(y) = a1bi for some bi ∈ R for all 1 ≤ i ≤ n. Define
y1 =

∑n
i=1 bixi. Notice that a1y1 =

∑n
i=1 a1bixi =

∑n
i=1 πi(y)xi = y. Therefore, a1 = φ(y) =

φ(a1y1) = a1φ(y1). Therefore, φ(y1) = 1.
We claim the following:

(1) M = Ry1 ⊕ kerφ
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(2) N = Ra1y1 ⊕ (N ∩ kerφ).

To prove (1), let x ∈M . Write x = φ(x)y1 + (x− φ(x)y1). Let us evaluate φ(x− φ(x)y1):

φ(x− φ(x)y1) = φ(x)− φ(φ(x)y1)

= φ(x)− φ(x)φ(y1)

= φ(x)− φ(x)

= 0.

Therefore, (x − φ(x)y1) is in kerφ. Clearly, φ(x)y1 ∈ Ry1, so M = Ry1 + kerφ. To show
that this sum is direct, it suffices to show that Ry1 ∩ kerφ = 0. Let b ∈ Ry1, and write
b = ay1. Then φ(ay1) = aφ(y1) = a, so if b ∈ kerφ, a = 0, so b must also be 0. Therefore,
M = Ry1 ⊕ kerφ.

To prove (2), let x′ ∈ N . Notice that a1 divides φ(x′), since a1 is a generator of φ(N).
Let φ(x′) = ba1 for some b ∈ R. Write x′ = φ(x′)y1 + (x′ − φ(x′)y1). Substituting ba1
for φ(x′) gives us that x′ = ba1y1 + (x′ − ba1y1). As we showed before, the second term is
in the kernel of φ. Since a1y1 = y, and y ∈ N , the second term is also in N . Therefore,
N = Ra1y1 + (N ∩ kerφ). Since Ra1y1 ⊆ Ry1, and (N ∩ kerφ) ⊆ kerφ, the intersection of
Ra1y1and(N ∩ kerφ) is also 0 by the method we used in our proof of part (1). Therefore,
N = Ra1y1 ⊕ (N ∩ kerφ).

Now, we can prove our theorem. We use induction on the rank of M , which is n. Since
kerφ is a submodule of M , it must be free. Notice that Ry1 is generated by y1, so it has
rank 1. Therefore, since M = Ry1 ⊕ kerφ, by 8.8, the rank of kerφ is n− 1. By induction,
there is a basis y2, . . . , yn of kerφ such that a2y2, . . . , amym is a basis of N ∩ kerφ (which is
a submodule of kerφ) for a2, . . . , am ∈ R such that a2 | · · · | am. Because M = Ry1 ⊕ kerφ,
y1, y2, . . . , yn form a basis for M . Since N = Ra1y1⊕ (N ∩kerφ), a1y1, a2y2, . . . , amym form a
basis for N . Now, we merely need to show that a1 | a2. Define a homomorphism f : M → R
such that f(y1) = f(y2) = 1 and f(yi) = 0 for 2 < i ≤ n. Then, a1 = a1f(y1) = f(a1y1),
so a1 ∈ f(N). Therefore, (a1) is also in f(N). Since (a1) is maximal in Σ, (a1) = f(N).
Since a2 = a2f(y2) = f(a2y2), a2 is also in f(N). Therefore, a1 divides a2, completing our
induction. �
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