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1. Summary

It is often useful to quantify the number of groups of a certain order for many reasons
such as finding an isomorphism between two groups. In this paper, we estimate the number
of groups of order pn, where p is prime and n is a positive integer. We come up with an
expression that, as n goes to infinity, behaves like a function in terms of p and n. Before we
proceed with the key result and proof, let us first define a few terms.

Definition 1.1. Let be p a prime. A group G is a p-group if all of its elements have order
pn for some integer n.

Theorem 1.2. All groups of order pn are p-groups.

Proof. All groups of order pn must only have elements with orders that divide pn. These
groups are p-groups because the order of each element is a divisor of the order of the group,
and the only numbers that divide pn are powers of p that are at most n. Hence, throughout
this paper, we use “p-group” and “group of order pn” interchangeably.

�

Definition 1.3. The index of a subgroup H in a group G, denoted [G : H], is the number
of cosets of the subgroup in G.

Definition 1.4. Big O notation is used to represent the limiting behavior of a function
by determining the order of the function. We write f(x) = O(g(x)) for some function g(x)
if there exists real numbers M and x0 such that |f(x)| ≤Mg(x) for all x ≥ x0.

For asymptotics, we often look at a function’s big O notation in order to find out which
term “dominates”. We often omit the constant term in big O notation because the M above
can just be multiplied by the constant instead.

Example. We can find the big O notation for the function f(x) = 3x4 − 6x3 + 13x −
log x − 15. To do so, we first may omit the terms that do not contribute to the highest
growth rate, leaving only 3x4. By omitting the coefficient, we have f(x) = O(x4).

Throughout the course of the paper, we will be proving the following statements:

First, we will show how Graham Higman proved that the number of p-groups with order

pn, denoted f(n, p), must be greater than or equal to p
2
27(n3−6n2). Higman also showed an

upper bound that approached p
2
15
n3

, but since the next result offers a stronger bound, we
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will not cover this case.

Second, we will show how Charles Sims proved the upper bound of f(n, p) to be p
2
27
n3+O

(
n

8
3

)
.

Together, this will yield the following formula, the centerpiece of this paper:

Higman-Sims asymptotic formula. The number of p-groups of order pn is

f(n, p) = p
2
27
n3+O(n

8
3 )

[Kan90]. Since the second part of the exponent is in big-O notation, as n (not p) becomes

very large, f(n, p) will begin to behave like p
2
27
n3+cn8/3

for some constant c.

After proving these results, we will assess this formula for smaller primes p and smaller
numbers n for which the number of groups with order pn is already known.

2. Lower Bound

The method Higman used to prove the lower bound was by taking a chain of inequalities,
with the largest value being equal to the number of p-groups of order pn and the smallest
being a value we can enumerate. He proved the following theorem first, which enumerates
the number of p-groups with a central elementary abelian subgroup of index pr and order
ps. We shall denote this value as g(r, s : p)(note the variables we use in this paper(besides
p) have no meaningful significance).

Theorem 2.1. If s > 1
2
r (r + 1), then g(r, s : p) = 0. Otherwise, we have

p
1
2
sr(r+1)−s2−r2 ≤ g(r, s : p) ≤ p

1
2
sr(r+1)−s2+s.

The proof of this theorem is outlined in [Hig60].

�

We now use this theorem to prove the remainder of the lower bound. First, define f2(n, p)
to be the number of p-groups of order pn that have central elementary abelian subgroups
containing an elementary abelian quotient group. When r + s = n, f2(n, p) ≥ g(r, s : p)
because all groups counted by the latter are also in the former. Now, we substitute r = 2n−δ

3

and s = n+δ
3

such that δ ∈ {0, 1, 2} and r, s ∈ Z.

Comparing s and 1
2
r (r + 1) will show us how we can apply Theorem 2.1 to g(r, s : p). We

set

s =
n+ d

3
and

1

2
r (r + 1) =

1

2

(2n− δ)(2n+ 2δ)

9
=

(2n− δ)(n+ δ)

9
=

2n2 + nδ − δ2

9
.
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Figure 1. Comparing the asymptotic lower bound with the given
inequality’s exponent

Since there is a term of degree 2 on the 1
2
r (r + 1) side, these values of r and s do not satisfy

s > 1
2
r (r + 1) for large values of n, namely n ≥ 3. Thus, we conclude that

p
1
2
sr(r+1)−s2−r2 ≤ g(r, s : p) ≤ f2(n, p).

Now substituting our values for r and s, our inequality becomes

pM ≤ f2(n, p)

where M varies depending on δ.

If δ = 0:

M =
n

3
× n

3
× 2n+ 3

3
− 5n2

9
=

2n3

27
− 12n2

27
=

2

27

(
n3 − 6n2

)
.

If δ = 1:

M =
1

2
(2n− 1)(n+ 1)

2n+ 2

27
− 4n2 − 4n+ 1

9
− n2 + 2n+ 1

9
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= 2n3 − 12n2 +
6n− 7

27

=
2

27

(
n3 − 6n2

)
+

2

9

(
n− 7

6

)
.

If δ = 2:

M = (n− 1)(n+ 2)(2n+ 1)/27−
(
4n2 − 8n+ 4 + n2 + 4n+ 4

)
/9

=
(2n3 − 12n2 + 9n− 26)

27

=
2

27

(
n3 − 6n2

)
+

1

3

(
n− 26

9

)
.

All three of these values are greater or equal to 2
27

(n3 − 6n2) for n ≥ 6. Graphing the
values as in Figure 1 further supports this- whenever the blue line approaches the red line,
the red line “kinks” upwards, and hence is always greater than or equal to the blue line (note
that in the diagram, w = r, z = s, and x = n).

It now follows that f2(n, p) ≥ p
2
27(n3−6n2). Since all groups in f2(n, p) are also in f(n, p),

the number of p-groups with order pn, as our final lower bound, we have the following chain
of inequalities, and hence our lower bound

f(n, p) ≥ f2(n, p) ≥ g(r, s : p) ≥ p
2
27
n3+O(n2).

�

3. Upper Bound

Charles Sims proved part of the upper bound by using results from anti-symmetric bilinear
maps and generators in [Sim65]. Because we are trying to find an upper bound, it makes
sense to take derivatives to find critical points and maximums. This is what we do in the
following section. Note that is in the lower bound the choice of our variables x, y, z doesn’t
have any significance. The results mentioned previously yielded an upper bound for pM for

M =
x2(1− x− z)

2
+

(
yz − z2

2

)
(1− x− y) +

z(1− x− y)2

2
+O(n

1
3 ),

where x+ y ≤ 1 and 0 ≤ z ≤ min(x, y). Taking derivatives helps us find critical points so
doing that with respect to y we get the derivative of

x2(1− x− z)

2
+

(
yz − z2

2

)
(1− x− y) +

z(1− x− y)2

2
+O(n

1
3 ),

which is

d

dy
(−y − x+ 1) ∗

(
zy − z2

2

)
+
z

2

d

dy
(−y − x+ 1)2 +

d

dy

(
x2(−z − x+ 1)

2

)



GROUPS OF ORDER pn 5

=

(
− d

dy
(y) +

d

dy
(−x) +

d

dy
(1)

)(
zy − z2

2

)
+ (−y − x+ 1)

(
z
d

dy
(y) +

d

dy
− z2

2

)

+(−y − x+ 1)(z)

(
− d

dy
(y) +

d

dy
(−x) +

d

dy
(1)

)

= (−1)

(
zy − z2

2

)
+ (−y − x+ 1)(z(1) + 0) + (−y − x+ 1)(z)(−1)

=
z2

2
− yz

= −
(
yz − z2

2

)
≤ 0.

This is the completes part of our proof.

Now that we have this we assume that y = z and thus y ≤ x.

If we let M be represented as A(x, y, z) because it is a function of three variables we can
take B(x, y) such that B(x, y) = A(x, y, y). This gives B(x, y) = x2(1 − x − y)/2 + y2(1 −
x− y)/2 + y(1− x− y)2/2.

If we now take the derivative of this expression with respect to y we get 1−2x
2
− y(1− x).

This is equal to 0 when x 6= 1 and y = 1−2x
2(1−x) .

Now we want to simplify this. In our expression with two variables B(x, y) we saw the
expression 1 − x − y. We make a substitution and call it u. We now have some function
C(x, u) = B(x, y) = (u(x2 + (1 − x − u)2 + u − ux − u2)/2. We now take the derivative of
this with respect to u which is (u(2x− 2(1− x− u)− u))/2. We note that if u = 0 then C
is 0. We assume that u > 0 so the derivative is 0 when 4x+ u− 2 = 0(or y = 3x− 1).

This means that there is only a critical point of B(x, y) when y = 3x−1. This is equivalent

to x = 5−
√
7

6
and y = 3−

√
7

6
. Now we plug this into B(x, y) and we actually get 7−

√
17

27
which

is indeed less than 2
27

.

We aren’t completely done yet but we are definitely close. We have to check that the
maximum of B(x, y) is less than or equal to 2

27
with the bounds that x + y = 1, y = 0,

or x = y. For the first case we have B(x, y) = 0 + 0 + 0 = 0. The second case we have

B(x, 0) = x2(1−x)
2

with 0 ≤ x ≤ 1. This achieves a maximum when x = 2
3

so the maximum

is 2
27

. Finally we have B(x, x) = x(1−2x)
2

which has a max of 1
16

when x = 1
4
.

Hence, we have that B(x, y) ≤ 2
27

and the upper bound is complete as well. Thus, we have
the general result of the Higman-Sims formula.

�
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4. Assessing the Formula

Since it is hard to enumerate the exact number of p-groups by hand, not many exact re-
sults for these numbers exist as of today. However, we can see the Higman-Sims asymptotic
formula in action for a small prime such as p = 2. We are able to obtain the number of
2-groups for n ≤ 10, and we can then compare these numbers to the formula 2

2
27
x3 . Before

doing so, however, we shall take the logarithm base 10 of both sides in order to work with
smaller numbers.

Next, we examine the rates of increase between consecutive integers between the two
equations. In effect, for h(x) = log(2

2
27
x3), we compare the following for each x we have data

for:

h(x)

h(x− 1)
− log(number of groups with order 2x)

log(number of with groups order 2x−1)
.

An example would be when x = 5. Given that there are 51 groups of order 25 = 32 and
14 groups of order 24 = 16, we examine the above value:

h(5)

h(4)
− log(51)

log(14)
≈ 0.4633.

All of this is summarized in graphical format in Figure 2. The black line represents
the logarithm of the asymptotic formula for p = 2 and the black dots represent the actual
number of groups for each 2x. While it appears that the black line is increasing much faster
than the line drawn by the black points, this soon reverses for larger values of x. Indeed,
the blue dots (which represent the difference between the rates of change between the two
black figures- dots and lines) are already becoming negative for x ≥ 9.

This negative trend indicates that the differences in the rates of change between the two
black figures (line and points) are approaching each other, showing that the number of p-
groups of order pn begins to behave like the Higman-Sims asymptotic formula for larger
values of n.

This test shows that the Higman-Sims asymptotic formula is indeed a good approximation
for p = 2. Other small primes such as p = 5 and p = 7 also follow the same pattern: a
decreasing sequence of blue dots. Larger primes are harder to test out as not many numbers
k have known values of how many groups of order pk there are, especially for larger p.

5. More Advances in Enumerating Groups

After this significant formula was discovered regarding p-groups in 1965, 4 years later,
Peter Neumann devised a formula that applied to enumerating all groups, whose proof can
be found in [Neu69].

Theorem 5.1. The number of groups with order n is less than

n
1
2
(log2 n)

2

.



GROUPS OF ORDER pn 7

Figure 2. Comparing actual number of p-groups to the estimated numbers

However, as can easily be seen by testing n = 1024, when the above formula yields a
maximum of 102450, compared to the actual value of 49, 487, 365, 422 ≈ 10243.553, and due
to the broadness of this theorem, it is not always a strong upper bound. Rather, in 1993,
a stronger analogous statement for non-prime powers was shown by László Pyber in [Pyb93].

In the future, if we are able to accurately measure the number of p-groups for higher
powers of p, these formulae will be available as measures of accuracy.
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