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1 Nilpotent Groups

Given a group G and H ≤ G, the commutator subgroup of G and H, de-
noted [G,H] is the subgroup generated by all elements of the form ghg−1h−1

where g ∈ G and h ∈ H, that is

[G,H] = 〈ghg−1h−1 : g ∈ G, h ∈ H〉

When a second group is unspecified, the commutator subgroup of G, also
called the derived subgroup of G, is defined to be [G,G]. [G,G] E G
and G/[G,G] is abelian, but the proofs of these are simple and not very
interesting so they will be omitted. A lower central series for a group G
is defined as a series with

G = G0 ≥ G1 ≥ G2...

where Gi+1 = [Gi, G]. There are similarly defined upper central series
and central series which exist if and only if a lower central series exists,
but they will not be discussed here. A group G is called nilpotent if it has a
lower central series so that Gn = {e} for some finite n, where e is the identity.

Theorem 1.1: If G is nilpotent and H ≤ G, NG(H) 6= H unless H = G,
where NG(H) denotes the normalizer of H in G.

Proof: Since G is nilpotent, it has a lower central series so that

G = G0 ≥ G1 ≥ G2 ≥ ...Gn = {e}
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There exists some Gi where Gi ≤ H but Gi−1 � H. Now

[Gi−1, H] ≤ [Gi−1, G] = Gi ≤ H

so ghg−1h−1 ∈ H for all g ∈ Gi−1 and h ∈ H. Since H is a subgroup,
ghg−1 ∈ H for all h ∈ H, that is gHg−1 = H for all g ∈ Gi−1. It follows
from the definition of the normalizer that Gi−1 ≤ NG(H). Since H � Gi−1,
there must be some element of Gi−1 not in H so there must be some element
in NG(H) not in H, hence H 6= NG(H). �

The converse of the above theorem is true for finite groups, but the proof
is more complicated so it is omitted. In addition to Theorem 1.1, nilpotent
groups satisfy several other useful properties. It can be proven via central
series that nilpotent groups are all solvable. Also, the Sylow subgroups of a
nilpotent group satisfy some interesting properties.

Theorem 1.2: Let G be a nilpotent group and P a Sylow p-subgroup.
P EG.

Proof: Since P is a Sylow p-subgroup, the second Sylow theorem states
that all other Sylow p-subgroups are conjugate to P . Thus, if g /∈ NG(P ),
gPg−1 is some other Sylow p-subgroup. Since P E NG(P ), it is the only
Sylow p-subgroup in NG(P ) so gPg−1 � NG(P ) and similarly gNG(P )g−1 6=
NG(P ). Therefore, NG(P ) is fixed by conjugation only by its own elements,
i.e. NG(NG(P )) = NG(P ). Since G is nilpotent, we NG(P ) = G by Theorem
1.1 and hence P EG. �

Again, for finite groups the converse is true. This can be proved most
easily using upper central series, but as upper central series were omitted so
will the proof of the converse.

Theorem 1.3: Let G be a finite group. Every Sylow subgroup of G
is normal if and only if G is isomorphic to the direct product of its Sylow
subgroups.

Proof: First, assume every Sylow subgroup of G is normal. Therefore,
for a given prime p, there is only one Sylow p-subgroup. If P1 and P2 are
distinct Sylow subgroups, P1∩P2 = {e}. Thus |P1P2| = |P1||P2| and similarly

|P1P2...Pn| = |P1||P2|...|Pn| = |G|

where the product ranges over all of the Sylow subgroups of G. Since each
element of P1P2...Pn is an element of G, it is a subset of G. The only subset
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of G with |G| elements is G itself, so

P1P2...Pn = G

Since each Pi is normal and have pairwise trivial intersections,

G ∼= P1P2...Pn
∼= P1 × P2 × ...Pn

The converse follows from the fact that every factor in a direct product is
normal.�

Corollary 1.4: If G is nilpotent, G is isomorphic to the direct product
of its Sylow subgroups.

Proof: This follows immediately from Theorems 1.2 and 1.3.�

Corollary 1.5: If G is nilpotent, any elements of coprime order commute.

Proof: From Corollary 1.4, G can be written as a direct product of its
Sylow subgroups. Let a = (a1, a2, ...an) and b = (b1, b2, ...bn) where each term
in the ordered n-tuple represents a Sylow subgroup of G. If a and b have
coprime order, given some i at least one of ai or bi is the identity. Since
the identity commutes with every element, it follows from the definition of
multiplying the ordered n-tuples that ab = ba. �

2 Maximal Subgroups

The definition of a maximal subgroup is fairly intuitive. M < G (note that
M 6= G) is called a maximal subgroup if there is no subgroup H where
M < H < G. For a nilpotent group G, if M is maximal M < NG(M) ≤ G
so NG(M) = G and hence M EG. If G is not nilpotent, this result may not
be true (for example, take any maximal subgroup of A5). This leads to the
definition of the Frattini subgroup. The Frattini subgroup of a group G,
denoted Φ(G), is the intersection of all of its maximal subgroups, that is to
say

Φ(G) =
⋂
M

M

where the intersection is over each maximal subgroup M . Unlike maximal
subgroups, the Frattini subgroup is normal, and in fact a stronger result is
true.
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Theorem 2.1: Φ(G) is fixed under every automorphism of G; in partic-
ular, it is fixed under conjugation and thus is normal.

Proof: Let f : G → G be an automorphism. Now if M is maximal,
f(M) must also be maximal, since

M < H < G ⇐⇒ f(M) < f(H) < f(G) = G

If A 6= B, f(A) 6= f(B) since automorphisms are bijections. Therefore, f
maps each distinct maximal subgroup to another distinct maximal subgroup.
Also, if a ∈ U and a ∈ V , f(a) ∈ f(U) and f(a) ∈ f(V ) so f(U ∩ V ) =
f(U) ∩ f(V ), so

f(
⋂
M

M) =
⋂
M

f(M)

where the intersection is over each maximal subgroup M . Since f just per-
mutes the maximal subgroups, rearranging the intersection yields⋂

M

M = Φ(G) �
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