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1 Burnside’s Lemma

Let G be a finite group that acts on a set X. Then,

|X/G| = 1
|G|

∑
g∈G |fix(g)|

where fix(g) is the is the set of elements in X that are fixed by g and |X/G| denotes the number of
orbits. In other words, the number of orbits is equal to the average number of elements that are fixed
by an element of G.

1.1 Proof

Proof.
∑
g∈G |fix(g)| enumerates the pairs (g, x) ∈ G×X where g(x) = x. Therefore,∑

g∈G
|fix(g)| = |{(g, x) ∈ G×X|g(x) = x}|

=
∑
x∈X
|stab(x)| =

∑
H∈X/G

∑
x∈H
|stab(x)|

Without loss of generality, suppose G acts on X from the left. If y, z are two elements from the
same orbit, and α is an element of G such that α(y) = z, then g 7→ αgα−1 is a bijection from stab(y) to
stab(z). From the orbit-stabilizer theorem we get that for any i in the orbit H of X∑

x∈H
|stab(x)| =

∑
x∈H
|stab(i)| = |orb(i)| · |stab(i)| = |G|

Therefore, we get that∑
g∈G
|fix(g)| =

∑
H∈X/G

∑
x∈H
|stab(x)| =

∑
H∈X/G

|G| = |G| · |X/G|

and
1

|G|
· |G| · |X/G| = |X/G|

1.2 Example

Suppose we want to count the number rotationally distinct colorings of the faces of a cube there are
using three colors. Let X be the ways we can color a cube with three colors in one orientation, which
would mean X would have 36 elements, and G be the rotation group of a cube. Therefore, when G acts
on X, two elements would be in the same orbit if one is a rotation of the other.

We know that |G| = 24, so now all we have to count is the number of elements g fixes in X for all
g ∈ G.

• One e fixes 36 elements

• Six π
2 face rotations fix 33 elements

• Three π face rotations fix 34 elements
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• Eight 2π
3 vertex rotations fix 32 elements

• Six π edge rotations fix 33 elements

By using Burnside’s lemma, we can find the number of orbits.
1
24 (36 + 6 · 33 + 3 · 34 + 8 · 32 + 6 · 33) = 57

2 Pólya Enumeration Theorem

2.1 Simplified Version

Let G be a permutation group of X, and let Y be a finite set of labels. Suppose Z is the set of functions
X → Y . Then,

|Z/G| = 1
|G|

∑
g∈G |Y |c(g)

where |Z/G| is the number of orbits of Z; c(g) is the number of cycles of g a permutation of X.
This simplified version basically follows from Burnside’s Lemma, which states that the number of

orbits is equal to the average number of elements fixed by an element of G.

2.2 Cycle Index

Let S be a finite set with m elements, i. e. |S| = m. If a permutation φ of elements in S splits S into a1
cycles of length 1, a2 cycles of length 2, . . . , am cycles of length m, then the type of φ is {a1, a2, . . . , am}.

Let G be a group of permutations on a finite set S, where |S| = m. The polynomial

PG(x1, x2, . . . , xm) =
1

|G|
∑
φ∈G

xa11 x
a2
2 . . . xamm

in m variables x1, x2, . . . , xm, where {a1, a2, . . . , am} is the cycle index of φ.

2.3 Weights

Let D and R be finite sets, and denote the set of all functions from D to R as RD. Given a permutation
group G of elements of D, two functions f1, f2 are equivalent if there exists g ∈ G such that

f1(g(d)) = f2(d)

It is easy to see that this is an equivalence relation. RD splits into equivalence class, which are called
patterns.

Suppose every element r ∈ R is assigned a weight. Then the weight W (f) of a function f ∈ RD is

W (f) =
∏
d∈D

w[f(d)]

2.4 Weighted Version of Pólya’s Enumeration Theorem

The number of colorings is given by adding up the coefficient of

PG{
∑
r∈R

[w(r)],
∑
r∈R

[w(r)]2 . . . }

where PG is the cycle index. Note that the unweighted version is the case where all of the weights are
equal. We will now present a proof by example.
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3 Examples

3.1 Chemistry

A major application of this theorem is chemical isomer enumeration. An isomer is a molecule that has
the same number of each type of atom but different bonds and, therefore, different structural formulas.
We will be looking at benzene’s derivatives which are formed by replacing the hydrogen with chlorine.
Since the molecule does not change when rotated or flipped, we will the group G is the dihedral group
D6. We get twelve permutations, which we counted in the same way as the first example problem.

We get a function by using cycle index, as shown below:

PD6 =
1

12
(x61 + 2x23 + 4x32 + 3x21x

2
2 + 2x6)

For dichlorobenzene, we will substitute xi = (Hi + Cli) for i = 1, 2, . . . , 6 to get

PD6
= 1

12 ((H + Cl)6 + 2(H3 + Cl3)2 + 4(H2 + Cl2)3 + 3(H + Cl)2(H2 + Cl2)2 + 2(H6 + Cl6)) =
H6 +H5Cl + 3H4Cl2 + 3H3Cl3 + 3H2Cl4 +HCl5 + Cl6

Thus, there are 12 distinct isomerizations of dichlorobenzene, not counting the original molecule.
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