
EXPLAINING THE SHAPE OF RSK

SIMON RUBINSTEIN-SALZEDO

1. Introduction

There is an algorithm, due to Robinson, Schensted, and Knuth (henceforth RSK),
that gives a bijection between permutations σ ∈ Sn and pairs (S, T ) of standard
Young tableaux of the same shape λ, where λ is a partition of n.

Let us illustrate how the RSK algorithm is performed. Let σ ∈ S8 be the permu-
tation given in cycle decomposition as (186)(457). We first write the permutation
in a different form a1 · · · a8, where ai = σ(i). So, σ written in this manner becomes
82357146.

We obtain (S, T ) incrementally from σ. First, we put the 8 in a box, the beginning
of the first tableau S. Hence, after one step, S looks like

8 .

For future numbers, we try to fit them at the end of the first row, but sometimes
this move is not allowable. When this occurs, there is a unique spot on the first row
where the next number is allowable. If there is already a number there (i.e., if the new
number is less than at least one of the numbers currently residing in the top row),
then the number in that spot is bumped to the second row, and the same procedure
is repeated until some bumped number finds a home at the right end of a row.

In this example, then, the 2 bumps the 8 down, so after step two S looks like

2
8 .

The next number to place is the 3, which is allowed to follow the 2. Similarly, the 5
and 7 cause us no difficulties, so after step five, S looks like

2 3 5 7
8 .
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Now, the 1 bumps the 2 down to the second row, and the 2 bumps the 8 down to the
third row, so after step six, S looks like

1 3 5 7
2
8 .

On step seven, the 4 bumps the 5 down to the second row, where it can find a
comfortable home, so then S is

1 3 4 7
2 5
8 .

Finally, on the last step, the 6 bumps the 7 down to row two, giving us the final
version of S, which is

1 3 4 6
2 5 7
8 .

So, that’s the story for S. To construct T , we number the evolution of the shape
of S: at each stage, exactly one new box is added to S. So, the box of S constructed
on the rth step is labeled r. Retracing the above process then tells us that

T =

1 3 4 5
2 7 8
6 .

There are many possible questions that one can ask about the RSK algorithm. For
example, for some λ ` n, for which σ is the shape of S (or T ) equal to λ? Or, for a
given standard Young tableau X, when is S(σ) equal to X?

More generally, the tableaux S and T are some encrypted form of σ. How do we
decode them in order to extract useful information?

All these questions have elegant answers that we will discuss in this essay.

Notation. Let λ ` n be a partition. The ith part of λ will be denoted by λi. We’ll
write λ∗ for its conjugate partition of n. That is, λ∗

i is the number of parts of λ with
length at least i.

2. Monotone subsequences

We’ll begin with a warm-up before tackling Greene’s full theorem about shape of
the tableaux from [1]. The following theorem is due to Schensted:

Theorem 1. (Schensted, [3]) The length of the longest increasing subsequence of σ
is equal to λ1 (the number of columns of S). Similarly, the length of the longest
decreasing subsequence of σ is equal to λ∗

1 (the number of rows of S).
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Example. Let σ be the permutation 82357146. A longest increasing subsequence
is 2357, and a longest decreasing subsequence is 821. (Neither of these is unique.)
Hence, the longest increasing subsequence has length 4, and the longest decreasing
subsequence has length 3, as predicted by Schensted’s Theorem.

Before starting the proof, we introduce the notion of basic subsequences. For a
positive integer j, the jth basic subsequence is a chronology of the numbers that, at
some point in the construction of S under the RSK algorithm, occupy the jth column
in the first row. Note that each basic subsequence is decreasing.

Example. Using 82357146 again, we find that the first basic subsequence is 821, the
second is 3, the third is 54, and the fourth is 76.

Proof. Since each basic subsequence is decreasing, an increasing sequence can only
contain at most one member of each basic subsequence. Thus, the length of the
longest increasing subsequence is less than or equal to λ1. Now, for each member r of
the jth basic subsequence, we can find some member of the (j−1)th basic subsequence
which is less than r; one way of doing this is to pick the number that occupied the
(j− 1)th spot on the first row when r was first inserted. Hence, if we pick an element
in the (λ1)

th basic subsequence and work back from there, we obtain an increasing
subsequence of length λ1.

To prove the part about descending sequences, we claim that, if we reverse a per-
mutation σ to obtain τ (so, in the example σ = 82357146 we’ve been using all along,
we obtain τ = 64175328), then S(τ) = S(σ)∗ is the conjugate tableau. We omit the
proof because it consists only of a rather tedious computation. Now, a decreasing
sequence of σ is the same as an increasing sequence of τ , so the result follows. �

3. Knuth’s equivalence relation

Another question we can ask, that will also be useful for future analysis, is when
two permutations σ, τ ∈ Sn give rise to the same first tableau S. Knuth provided an
answer to this question.

Definition 2. Suppose σ ∈ Sn is a permutation, and there exist three numbers
1 ≤ x < y < z ≤ n so that σ contains a consecutive subsequence of x, y, and z (not
necessarily in that order), with x and z adjacent to each other. Let τ ∈ Sn be the
permutation obtained from σ by interchanging x and z. Then we say that σ and τ
are an elementary Knuth equivalent pair. More generally, let ∼ be the equivalence
relation on Sn generated by the Knuth equivalent pairs described above. Then if
σ ∼ τ , we say that σ and τ are Knuth-equivalent.

Remark 3. Knuth equivalence can also be defined in terms of the Bruhat-Chevalley
ordering, if we give the symmetric group the structure of a Coxeter group. It is likely
that there is interesting combinatorics to be found in relating the RSK algorithm to
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this ordering and perhaps algebraic groups in general. Unfortunately, I do not know
what it is.

Theorem 4. [2] Two permutations σ, τ ∈ Sn have the same S if and only if they
are Knuth-equivalent.

Example. For our favorite permutation σ = 82357146, we know that

S =

1 3 4 6
2 5 7
8 , T =

1 3 4 5
2 7 8
6 .

For τ = 82351746 (we’ve just switched the fifth and sixth digits, which is an allowable
operation under Knuth equivalence), we have

S =

1 3 4 6
2 5 7
8 , T =

1 3 4 6
2 7 8
5 .

While it is true that we have switched the fifth and sixth digits to get from σ to τ ,
and the numbers 5 and 6 have been interchanged in T (σ) and T (τ), we ought not
read too much into this behavior: I do not know of any simple explanation in the
variance of T as we replace σ with a Knuth-equivalent τ .

The value of Knuth equivalence is that it allows us, for each standard Young tableau
S, to pick out a canonical permutation σ ∈ Sn so that S(σ) = S. From a tableau S,
we start at the bottom and read each row in order. With σ = 82357146, we know
that

S(σ) =

1 3 4 6
2 5 7
8 ,

so the canonical Knuth equivalent permutation is 82571346. (We’ll also call this
permutation the reading word of S.) The following sequence of elementary Knuth
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equivalent pairs demonstrates that these are indeed Knuth equivalent:

82357146

82351746

82351476

82315476

82135476

82153476

82513476

82513746

82517346

82571346

I do not know if this is the shortest sequence of elementary equivalent pairs.

Proof. (Sketch.) It is a routine, if somewhat unpleasant, computation to show that
if σ and τ are Knuth equivalent, then S(σ) = S(τ): it suffices to check the result for
elementary Knuth equivalent pairs. The other direction is more exciting. Suppose
S(σ) = S(τ). It suffices to show the result when σ is a canonical representative of
a Knuth equivalence class. For lack of better options, we use the following slightly
unwieldy notational convention: if σ ∈ Sn and 1 ≤ k ≤ n, let (σ, k.5) denote the
element of Sn+1 so that (σ, k.5)(i) = σ(i) if σ(i) ≤ k, (σ, k.5)(i) = σ(i)+1 if σ(i) > k,
and σ(n + 1) = k + 1.

By induction, it suffices to show that if σ ∈ Sn is a canonical representative
of a Knuth equivalence class, and σ′ ∈ Sn+1 is the reading word of (σ, k.5), then
(σ, k.5) and σ′ are Knuth equivalent. Thus, we must only check that if a1 < · · · <
aj−1 < x < aj < · · · < ak, then the permutation a1 · · · akx is Knuth equivalent to
a1 · · · ajxaj+1 · · · ak and to aja1 · · · aj−1xaj+1 · · · ak, which is straightforward to ver-
ify. �

4. The shape of RSK

Using the notion of Knuth equivalence discussed in the previous section, we can
state and prove Greene’s generalization to Schensted’s Theorem, as described in [1].

Definition 5. Let σ ∈ Sn be a permutation. For a positive integer k, we say that
a subsequence of σ is k-descending if it does not contain an increasing sequence of
length k + 1. Similarly, we say that a subsequence is k-ascending if it does not
contain a decreasing sequence of length k + 1. For a positive integer k, we let dk(σ)
be the maximum length of a k-descending subsequence. Similarly, we let ak(σ) be
the maximum length of a k-ascending subsequence.
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Another way to detect k-descending subsequences is to note that they are the
unions of k (possibly empty) decreasing subsequences.

Example. Let σ be the permutation 82357146. As we saw above, a longest 1-
descending sequence is 821, and a longest 1-ascending sequence is 2357. A longest
2-descending sequence is 82514, and a longest 2-ascending sequence is 2357146. A
longest 3-descending sequence is 8257146.

Theorem 6. For a positive integer k, we have

dk(σ) = λ∗
1 + · · ·+ λ∗

k,

ak(σ) = λ1 + · · ·+ λk.

Proof. Our method of attack is as follows: We first show that the lengths of maximal
k-ascending and k-descending sequences are constant on Knuth equivalence classes.
Then, we prove the result for the canonical representatives in each Knuth equivalence
class.

To prove the first assertion, we must show the following: Suppose that x < y < z,
and σ contains a consecutive subsequence of the form y, z, x or z, x, y. We must show
that switching x and z does not change the lengths of maximal k-ascending or k-
descending sequences. Since all possible cases are roughly symmetric, we’ll just show
that one of these moves does not increase ak(σ). Let’s work with the case that y, z, x
is a consecutive subsequence. Let τ be the permutation obtained by switching x and
z. Suppose ak(τ) > ak(σ). This means that τ contains a k-ascending subsequence γ
of length at least ak(σ)+1. Hence, γ must contain both x and z, or else it would also
be a k-ascending subsequence of σ. Write γ as the union of k ascending sequences:
γ = γ1 ∪ · · · ∪ γk. Then one of the γi must contain both x and z, or else nothing
would have changed from switching x and z. But γi is still an increasing subsequence
if we replace x by y. Thus σ also has a k-ascending subsequence of length ak(τ) if γ
did not contain y. Hence, γ must have contained y.

So, let’s suppose that γ contains y. Switch x and z back again. By hypothesis,
this subsequence contains a decreasing subsubsequence δ of length k + 1, and δ must
contain z and x (in that order). But, replacing z by y in δ gives us a decreasing
subsubsequence of γ of length k + 1, which contradicts the assumption that γ was
k-ascending. The other cases are similar.

So, that shows that ak(σ) and dk(σ) are constant on Knuth-equivalence classes.
Let’s now show the result for the canonical representatives of these equivalence classes.
That is, we must show that if σ is a canonical representative, then ak(σ) = λ1+· · ·+λk.
(The case of k-decreasing sequences follows from this and the observation we made
earlier, that reversing the sequence transposes S.)

First, ak(σ) ≥ λ1 + · · · + λk, since we can start reading S from the kth row and
going up; this gives a k-ascending sequence since each row of S is increasing. Now,
partition σ into λ1 decreasing subsequences by reading the columns from bottom to
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top. A k-ascending sequence can only intersect a decreasing sequence in at most k
elements, so if γ is any k-ascending sequence, it can only meet the ith column in at
most min(k, λ∗

i ) elements. This number is maximized in all cases by choosing the
sequence given above. This proves Greene’s extension of Schensted’s Theorem. �

It is important to note that, while Greene’s Theorem gives us an interpretation of
the shape of S, it does not give any meaning to the individual parts of λ or λ∗. That
is, λ2 on its own (for example) has no natural combinatorial interpretation beyond
its interpretation in conjunction with λ1.
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