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SIMON RUBINSTEIN-SALZEDO

Abstract. In this essay, we will discuss some interesting properties of the Mathieu
groups, which are a family of five sporadic finite simple groups, as well as some
closely related topics.

One construction of the Mathieu groups involves Steiner systems, so we will begin
by discussing Steiner systems.

1. Steiner systems

Definition 1. Let ` < m < n be positive integers. We say that a collection
S1, S2, . . . , SN of distinct subsets of {1, 2, . . . , n} is an (`, m, n)-Steiner system (de-
noted S(`, m, n)) if it satisfies the following two properties:

• For each i, |Si| = m.
• For every subset T ⊂ {1, 2, . . . , n} with |T | = `, there is exactly one i so that

Si ⊃ T .

Of course, Steiner systems do not exist for most triples (`, m, n), but occasionally
they do exist. It can be shown, for instance, that S(2, 3, n) exists if and only if n ≡ 1
(mod 6) or 3 (mod 6).

In our discussion of Mathieu groups, we will be most interested in the Steiner
systems S(4, 5, 11), S(5, 6, 12), S(3, 6, 22), S(4, 7, 23), and S(5, 8, 24). Let us now
show that these Steiner systems do in fact exist.

In fact, we really only need to construct the Steiner systems S(5, 6, 12) and S(5, 8, 24);
the others will follow easily from the constructions of these.

In order to construct the Steiner system S(5, 6, 12), we will consider the projec-
tive line P1(F11) over the field with eleven elements. This consists of the elements
0, 1, 2, . . . , 10, together with an additional element, which we will call ∞. Now
consider the set of squares in F11, which are S1 = {0, 1, 3, 4, 5, 9}. Now suppose

γ ∈ PSL2(F11). If γ is represented by

(
a b
c d

)
, then define

γ(S1) =

{
az + b

cz + d

∣∣∣∣ z ∈ S1

}
,
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where we interpret az+b
cz+d

to be ∞ if cz + d = 0. Then {γ(S1) : γ ∈ PSL2(F11)} is a
Steiner system S(5, 6, 12).

To construct S(4, 5, 11) from S(5, 6, 12), we simply take those elements of S(5, 6, 12)
that do not contain ∞. Thus we have constructed the first two of our five Steiner
systems.

We now construct the Steiner system S(5, 8, 24). Perhaps the simplest way of
describing it is by using binary lexicodes, as follows: Let b1 be the 24-bit binary
string consisting of all 0 digits. Now, for 2 ≤ n ≤ 4096, define bn to be the first
string lexicographically that differs from each of the strings b1, b2, . . . , bn−1 in at least
8 positions. Of these 4096 strings we have just written down, 759 of them contain
exactly eight 1 digits. For each of these 759 strings, take a subset Si of {1, 2, . . . , 24}
which includes digit d if and only if the dth digit of the corresponding binary string
is a 1. The subsets we have chosen form a Steiner system S(5, 8, 24).

To construct S(4, 7, 23) and S(3, 6, 22) from S(5, 8, 24), we consider those Si ∈
S(5, 8, 24) that do not contain 24 in the first case, and 23 or 24 in the second.

It should be pointed out here that Steiner systems are very rare. In particular,
there are no known Steiner systems S(`, m, n) with ` > 5, and the only ones known
with ` = 5 are S(5, 6, 12) and S(5, 8, 24), described here.

2. Mathieu groups

Now that we have defined all the Steiner systems we need, we are able to define
the Mathieu groups. These will be the automorphism groups of the Steiner systems.

Definition 2. The Mathieu groups M11, M12, M22, M23, and M24 are defined as
follows:

• M11 = {σ ∈ S11 : σ(S) ∈ S(4, 5, 11) for all S ∈ S(4, 5, 11)}.
• M12 = {σ ∈ S12 : σ(S) ∈ S(5, 6, 12) for all S ∈ S(5, 6, 12)}.
• M22 = {σ ∈ S22 : σ(S) ∈ S(3, 6, 22) for all S ∈ S(3, 6, 22)}.
• M23 = {σ ∈ S23 : σ(S) ∈ S(4, 7, 23) for all S ∈ S(4, 7, 23)}.
• M24 = {σ ∈ S24 : σ(S) ∈ S(5, 8, 24) for all S ∈ S(5, 8, 24)}.

The Mathieu groups are the five smallest of the 26 sporadic finite simple groups.

Definition 3. Let G be a group which acts on a set X. We say that G is k-transitive
if for any two k-tuples (x1, . . . , xk) and (y1, . . . , yk) of elements of X, where all the
xi’s are distinct, and all the yi’s are distinct, there is some g ∈ G so that g(xi) = yi

for 1 ≤ i ≤ k.

It follows fairly easily from the definitions that

• M22 is 3-transitive,
• M11 and M23 are 4-transitive,
• M12 and M24 are 5-transitive.
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Theorem 4. The five Mathieu groups are simple.

We’ll prove this theorem in bits, beginning with M11 and M23, which Robin Chap-
man proves elegantly in [3]. We follow his treatment for the simplicity of M11 and
M23, and we follow Alder in [1] for the proofs of the simplicity of M12, M22, and M24.
We begin with some basic facts about permutation groups.

Let p be a prime and X = {1, . . . , p}. If G ≤ Sp with |G| = n, then G acts on X
transitively if and only if p | n. Suppose now that G is transitive, so that p | n, and
let P be a Sylow p-subgroup of G. Let mG denote the number of Sylow p-subgroups
of G so that mG = |G : NG(P )|, and let rG = |NG(P ) : P |. Thus n = prGmG.
Sylow’s Theorem tells us that mG ≡ 1 (mod p). Now, since P ≤ NG(P ) ≤ NSp(P )
and NSp(P ) ∼= A GL1(Fp), the affine general linear group of invertible affine maps
x 7→ ax + b (mod p), we have p = |P | ≤ |NG(P )| ≤ |NSp(P )| = p(p − 1), so
rG | (p− 1).

Lemma 5. Suppose G is a transitive subgroup of Sp, and rG = 1. Then G ∼= Z/pZ.

Proof. Suppose rG = 1. Then G contains mG(p − 1) = n − mG elements of order
p. Since elements of order p do not fix any points of X, G contains at most mG

elements which fix at least one point of X. Now, stabilizers Gj of j ∈ X each contain
|G|/p = mG elements, so all elements of G other than those of order p fix all points
of X. But since G acts faithfully on X, it follows that mG = 1, so n = p, or
G ∼= Z/pZ. �

Lemma 5 already allows us to show that certain subgroups of Sp are simple.

Theorem 6. Let G ≤ Sp act transitively on X, where |G| = pmr with m > 1, m ≡ 1
(mod p) and r < p prime. Then G is a simple group.

Proof. Clearly, in this case, rG = r and mG = m. Suppose H is a nontrivial normal
subgroup of G. Then the H-orbits of X are permuted transitively by G, so all the
orbits have the same size. Thus X consists of a unique H-orbit, so H acts transitively
on X. Thus p | |H|, so H has some Sylow p-subgroup Q. Since H C G, H contains
all Sylow p-subgroups of G (since they are all conjugate), so mH = mG = m. Thus
|H| = pmt for some t | r. But t > 1 by Lemma 5, and r is prime by hypothesis, so
H = G. Thus G is simple. �

In order to show that the Mathieu groups M11 and M23 are simple, we need to
know something about their orders.

Lemma 7. • |M11| = 24 × 32 × 5× 11.
• |M23| = 27 × 32 × 5× 7× 11× 23.

We can now put all this information together to show that M11 and M23 are simple.

Theorem 8. M11 and M23 are simple.
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Proof. We first check that M11 is simple. Since 11 | |M11|, M11 acts transitively on
{1, . . . , 11}. Since |M11|/11 = 720 ≡ 5 (mod 11), we have rG = 5 and mG = 144.
Thus Theorem 6 tells us that M11 is simple.

We now check that M23 is simple. Now, 23 | |M23|, so M23 acts transitively on
{1, . . . , 23}. Since |M23|/23 = 443520 ≡ 11 (mod 23) so rG = 11 and mG = 40320.
Again Theorem 6 tells us that M23 is simple. �

In order to prove the simplicity of M12 and M24 we cite (without proof) a lemma
from Rotman [6], p. 193.

Lemma 9. Suppose G acts faithfully and k-transitively on a set X. If there is some
x ∈ X so that the stabilizer Gx is simple, then

• If k ≥ 4, G is simple.
• If k ≥ 3 and |X| 6= 2r for any r, then either G ∼= S3 or G is simple.

Together with Theorem 8, Lemma 9 immediately implies the following result:

Theorem 10. The Mathieu groups M12 and M24 are simple.

The one remaining Mathieu group is M22. This again follows from Lemma 9 once
we note that a point stabilizer of M22 is PSL3(F4), which is simple. Hence

Theorem 11. M22 is simple.

3. Binary Golay Codes

Let us return to the code we used to construct the Steiner system S(5, 8, 24). Recall
that this code consists of those 24-digit binary strings which are lexicographically first
with respect to differing from all prior strings in at least eight positions. We call this
code the extended Golay code. If we delete the rightmost digit in each codeword of
the extended Golay code, we obtain the perfect Golay code.

The perfect Golay code is very important in coding theory, for it allows us to send
data which may be corrupted as efficiently as possible. More precisely, suppose we
wish to send a string of twelve binary digits, but we know that up to three of the
digits in any string we send may be changed. Then, by sending a certain 23-digit
string with the given twelve initial digits, we can correct any three (or fewer) errors
in order to recover the original string.

Furthermore, with the Golay code, this recovery is optimal, in the following sense:
let f : F12

2 → F23
2 be the encoding of data (so that the first twelve digits of f(S) are

equal to those of S). Then any element of F23
2 differs from some element of f(F12

2 ) in
at most three digits, so any string in F23

2 encodes a unique string from F12.
We mentioned earlier that M24 is the automorphism group of the set of codewords

with exactly eight 1’s. However, it is also true that M24 is the automorphism group
of the entire extended Golay code. Similarly, M23 is the automorphism group of the
perfect Golay code.
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It turns out that the extended Golay code is linear, in the sense that if v, w ∈ F24
2 are

both in the Golay code, so is v+w. Thus the Golay code forms a 12-dimensional vector
subspace of F24

2 . To prove this, we need some results about impartial combinatorial
games. We first introduce the game of nim. Proofs of all statements about general
games can be found in either [2] or [4]. More details about the relation between codes
and games can be found in [5].

In the game of nim, there are several piles of stones, and two players who will take
turns making moves. A move consists of choosing one of the piles with at least one
stone, and removing as many stones from that pile as are desired (but at least one).
The winner is the player who removes the last stone. (Alternatively, the loser is the
player whose turn it is to move when there are no more legal moves remaining.)

We can generalize the game of nim so that we allow various different types of moves,
but so that players still alternate moves and so that the unfortunate player who is
to move but does not have any legal moves remaining is the loser. We will still have
several piles of stones, but now we will have a certain family of so-called turning sets
{h, i, j, . . .}, where h > i > j > · · · , so that it is legal to replace a pile of size h with
piles of size i, j, . . . A general position therefore is a sum of piles Pa + Pb + Pc + · · · ,
where Pr denotes a pile of size r. Thus nim consists of turning sets {h, i} where
h > i ≥ 0.

We now define precisely what it means for certain positions to be winning for one
player.

Definition 12. Let G be an impartial combinatorial game of the type described
above. Then we divide the class of positions of games into two outcome classes
called N and P , in the following manner. We say that the zero position, denoted 0,
consisting of no piles, is in class P . We then say:

• G ∈ N if there is some legal move G → G′ so that G′ ∈ P ,
• G ∈ P if all legal moves G → G′ satisfy G′ ∈ N .

The N positions (standing for N ext player) are those in which the player to move
can win with optimal play, and the P positions (standing for Previous player) are
those in which the player who just moved wins with optimal play.

Since all are games are decided in a fixed number of moves, any G is either in class
N or P .

We now say what it means to add two games. If G and H are games, a move
consists of making a legal move in exactly one of G and H. The game ends when
there are no legal moves left in either game.

Definition 13. We say two games G and H are equivalent (and write G = H) if
whenever X is a game, either G + X ∈ P and H + X ∈ P , or G + X ∈ N and
H + X ∈ N . That is, G and H act in the same way with respect to adding other
games.
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Theorem 14 (Sprague–Grundy). Every impartial combinatorial game is equivalent
to a unique nim game with exactly one pile. All P positions are equivalent to 0.

A very important (but easy) corollary of the Sprague–Grundy Theorem is that the
sum of two P positions is again a P position. Much more generally, however, is the
following: Let ∗n denote the nim position with exactly one pile, consisting of n stones.
Then ∗m + ∗n = ∗(m ⊕ n), where m ⊕ n is the number obtained by writing m and
n in binary and adding without carrying (alternatively, addition when considered as
being elements of an F2-vector space). If P is some game position, write G(P ) = n if
P = ∗n. G(P ) is called the Grundy value of P .

Since a game with two piles of the same size is clearly a P position, we do not
change anything in the evaluation of a game by deleting piles of the same size in
pairs. Thus without loss of generality, we may assume that for each n, the number of
piles of size n is either 0 or 1. Therefore, we may express a game position in terms of
a binary string · · · a3a2a1, where ai is the number of strings of size i (either 0 or 1).
Since we can express any position as P = a1P1 + a2P2 + · · · (where Pi is a pile of size
i), we have

G(P ) =
⊕

i ≥ 1aiG(Pi).

Since the Grundy numbers of general positions are defined by a linear equation, we
have the following result:

Theorem 15. The set of binary strings corresponding to the P positions is F2-linear.

We now consider the following game which helps us to prove the linearity of the
Golay code. It suffices to describe the turning sets for the game; they are all sets of
size one through seven so that the largest element is at most 24. (Since piles of size 25
or higher are irrelevant, we do not list them.) It is easy to check using Definition 12
that the words of the extended Golay code are exactly the P positions of this game.
Hence Theorem 15 implies the following result:

Theorem 16. The extended Golay code is F2-linear.

4. The Leech Lattice and other sporadic simple groups

The Mathieu groups and the Golay code are related to a lattice in R24, called the
Leech lattice, which generates a sphere packing in 24 dimensions. The maximum
number of spheres that can be tangent to a fixed sphere in R24 so that all spheres
have lattice point centers is 196,560. We now describe how this can be done by giving
the coordinates of the centers. We take our fixed sphere to be centered at the origin
in R24.

Of the 196,560 tangent spheres, we now describe the centers of 97,152 of them. If
we fix a code work α with eight 1’s in the extended Golay code (alternatively, an
element of the Steiner system S(5, 8, 24)), we generate 27 sphere centers from α by
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placing ±2 in the positions in which α has a 1 in such a way that the number of −2
terms is even. We place a 0 everywhere else. This gives 27 × 759 = 97, 152 points.

We now describe another 1,104 sphere centers. We place ±4 in any two of the
coordinates and 0 everywhere else. This gives 22 ×

(
24
2

)
= 1, 104 points.

We now describe the remaining 97,308 sphere centers. One coordinate is ±3, and
the rest are ±1. The sign choices are given by the words in the extended Golay code.

We take the radius of each sphere to be 8.
The Leech lattice allows us to construct more sporadic simple groups. For instance,

the automorphism group of the Leech lattice contains the Conway group Co1 as an
index 2 subgroup, and the smaller Conway groups Co2 and Co3 are the stabilizers of
one vector of the second and third type described above, respectively.

The McLaughlin group, the Higman-Sims group, the Suzuki group, and the Hall-
Janko group are also stabilizers of various sets of vectors in the Leech lattice. Thus
straightfoward considerations of the Leech lattice provides us with seven of the spo-
radic groups, sometimes called the second generation of the Happy Family. (The five
Mathieu groups are the first generation.)

These sporadic groups related to the Leech lattice as well as the others are fasci-
nating objects, but are unfortunately beyond the scope of this essay.

References

[1] Stuart Alder, Classical papers in group theory: the Mathieu groups, Master’s thesis, University
of East Anglia, 2006.

[2] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning ways for your mathematical
plays. Vol. 1, second ed., A K Peters Ltd., Natick, MA, 2001. MR MR1808891 (2001i:91001)

[3] Robin J. Chapman, An elementary proof of the simplicity of the Mathieu groups M11 and M23,
Amer. Math. Monthly 102 (1995), no. 6, 544–545. MR MR1336642

[4] J. H. Conway, On numbers and games, second ed., A K Peters Ltd., Natick, MA, 2001.
MR MR1803095 (2001j:00008)

[5] John H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game
theory, IEEE Trans. Inform. Theory 32 (1986), no. 3, 337–348. MR MR838197 (87f:94049)

[6] Joseph J. Rotman, An introduction to the theory of groups, fourth ed., Graduate Texts in Math-
ematics, vol. 148, Springer-Verlag, New York, 1995. MR MR1307623 (95m:20001)

Department of Mathematics, Stanford University, Stanford, CA 94305
E-mail address: simonr@math.stanford.edu


